Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Core body temperature (CBT) is one of the four vital signs that must be monitored continuously. The continuous recording of CBT is possible through invasive methods by inserting a temperature probe into specific body sites. We report a novel method to monitor CBT through the quantitative measurement of skin blood perfusion rate (ω). By monitoring the skin temperature, heat flux, and ω, the arterial blood temperature, equivalent to CBT, can be extracted. ω is quantitatively evaluated thermally via sinusoidal heating with regulated thermal penetration depth so that the blood perfusion rate is acquired only in the skin. Its quantification is significant because it indicates various physiological events including hyper- or hypothermia, tissue death, and delineation of tumors. A subject showed promising results with steady values of ω and CBT of 5.2 ± 1.05 × 10 s and 36.51 ± 0.23 °C, respectively. For periods where the subject's actual CBT (axillary temperature) did not fall within the estimated range, the average deviation from the actual CBT was only 0.07 °C. This study aims to develop a competent methodology capable of continuously monitoring the CBT and blood perfusion rate at a distant location from the core body region for the diagnosis of a patient's health condition with wearable devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.3c00273 | DOI Listing |