Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, numerous pancreas segmentation methods have achieved promising performance on local single-source datasets. However, these methods don't adequately account for generalizability issues, and hence typically show limited performance and low stability on test data from other sources. Considering the limited availability of distinct data sources, we seek to improve the generalization performance of a pancreas segmentation model trained with a single-source dataset, i.e., the single-source generalization task. In particular, we propose a dual self-supervised learning model that incorporates both global and local anatomical contexts. Our model aims to fully exploit the anatomical features of the intra-pancreatic and extra-pancreatic regions, and hence enhance the characterization of the high-uncertainty regions for more robust generalization. Specifically, we first construct a global-feature contrastive self-supervised learning module that is guided by the pancreatic spatial structure. This module obtains complete and consistent pancreatic features through promoting intra-class cohesion, and also extracts more discriminative features for differentiating between pancreatic and non-pancreatic tissues through maximizing inter-class separation. It mitigates the influence of surrounding tissue on the segmentation outcomes in high-uncertainty regions. Subsequently, a local-image-restoration self-supervised learning module is introduced to further enhance the characterization of the high-uncertainty regions. In this module, informative anatomical contexts are actually learned to recover randomly-corrupted appearance patterns in those regions. The effectiveness of our method is demonstrated with state-of-the-art performance and comprehensive ablation analysis on three pancreas datasets (467 cases). The results demonstrate a great potential in providing a stable support for the diagnosis and treatment of pancreatic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3294278DOI Listing

Publication Analysis

Top Keywords

self-supervised learning
16
pancreas segmentation
12
high-uncertainty regions
12
dual self-supervised
8
data sources
8
anatomical contexts
8
enhance characterization
8
characterization high-uncertainty
8
learning module
8
regions
5

Similar Publications

TissueMosaic: Self-supervised learning of tissue representations enables differential spatial transcriptomics across samples.

Cell Syst

September 2025

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.

View Article and Find Full Text PDF

Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Self-supervised representation learning with continuous training data improves the feel and performance of myoelectric control.

Comput Biol Med

September 2025

Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.

Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).

View Article and Find Full Text PDF

Motivation: Due to the intricate etiology of neurological disorders, finding interpretable associations between multiomics features can be challenging using standard approaches.

Results: We propose COMICAL, a contrastive learning approach using multiomics data to generate associations between genetic markers and brain imaging-derived phenotypes. COMICAL jointly learns omics representations utilizing transformer-based encoders with custom tokenizers.

View Article and Find Full Text PDF