Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This paper introduces a fault diagnosis method for mine scraper conveyor gearbox gears using motor current signature analysis (MCSA). This approach solves problems related to gear fault characteristics that are affected by coal flow load and power frequency, which are difficult to extract efficiently. A fault diagnosis method is proposed based on variational mode decomposition (VMD)-Hilbert spectrum and ShuffleNet-V2. Firstly, the gear current signal is decomposed into a series of intrinsic mode functions (IMF) by using VMD, and the sensitive parameters of VMD are optimized by using a genetic algorithm (GA). The Sensitive IMF algorithm judges the modal function sensitive to fault information after VMD processing. By analyzing the local Hilbert instantaneous energy spectrum for fault-sensitive IMF, an accurate expression of signal energy changing with time is obtained to generate the local Hilbert immediate energy spectrum dataset of different fault gears. Finally, ShuffleNet-V2 is used to identify the gear fault state. The experimental results show that the accuracy of the ShuffleNet-V2 neural network is 91.66% after 778 s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222692 | PMC |
http://dx.doi.org/10.3390/s23104951 | DOI Listing |