Clinical Pharmacology and Translational Considerations in the Development of CRISPR-Based Therapies.

Clin Pharmacol Ther

Intellia Therapeutics, Inc., Cambridge, Massachusetts, USA.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome editing holds the potential for curative treatments of human disease, however, clinical realization has proven to be a challenging journey with incremental progress made up until recently. Over the last decade, advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems have provided the necessary breakthrough for genome editing in the clinic. The progress of investigational CRISPR therapies from bench to bedside reflects the culmination of multiple advances occurring in parallel, several of which intersect with clinical pharmacology and translation. Directing the CRISPR therapy to the intended site of action has necessitated novel delivery platforms, and this has resulted in special considerations for the complete characterization of distribution, metabolism, and excretion, as well as immunogenicity. Once at the site of action, CRISPR therapies aim to make permanent alterations to the genome and achieve therapeutically relevant effects with a single dose. This fundamental aspect of the mechanism of action for CRISPR therapies results in new considerations for clinical translation and dose selection. Early advances in model-informed development of CRISPR therapies have incorporated key facets of the mechanism of action and have captured hallmark features of clinical pharmacokinetics and pharmacodynamics from phase I investigations. Given the recent emergence of CRISPR therapies in clinical development, the landscape continues to evolve rapidly with ample opportunity for continued innovation. Here, we provide a snapshot of selected topics in clinical pharmacology and translation that has supported the advance of systemically administered in vivo and ex vivo CRISPR-based investigational therapies in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.3000DOI Listing

Publication Analysis

Top Keywords

crispr therapies
20
clinical pharmacology
12
genome editing
8
pharmacology translation
8
site action
8
action crispr
8
mechanism action
8
clinical
7
therapies
7
crispr
6

Similar Publications

genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.

View Article and Find Full Text PDF

Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.

View Article and Find Full Text PDF

Tuberculosis (TB) remains one of the leading causes of infectious disease mortality worldwide, increasingly complicated by the emergence of drug-resistant strains and limitations in existing diagnostic and therapeutic strategies. Despite decades of global efforts, the disease continues to impose a significant burden, particularly in low- and middle-income countries (LMICs) where health system weaknesses hinder progress. This comprehensive review explores recent advancements in TB diagnostics, antimicrobial resistance (AMR surveillance), treatment strategies, and vaccine development.

View Article and Find Full Text PDF

Nuclear receptors (NRs) are a superfamily of ligand-activated transcription factors that regulate gene expression in response to metabolic, hormonal, and environmental signals. These receptors play a critical role in metabolic homeostasis, inflammation, immune function, and disease pathogenesis, positioning them as key therapeutic targets. This review explores the mechanistic roles of NRs such as PPARs, FXR, LXR, and thyroid hormone receptors (THRs) in regulating lipid and glucose metabolism, energy expenditure, cardiovascular health, and neurodegeneration.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF