Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CoO/g-CN Z-scheme composite heterojunction has been effectively built in a facile sonication-assisted hydrothermal manner. The as-synthesized optimal 0.2 M CoO/g-CN (GCO2) composite photocatalysts (PCs) revealed admirable degradation efficiency towards methyl orange (MO, 65.1%) and methylene blue (MB, 87.9%) organic pollutant compared with bare g-CN within 210 min under light irradiation. Besides, the features of investigating structural, morphological and optical properties have evidence that the unique decoration effect of CoO nanoparticles (NPs) on the g-CN structure with intimate interface heterojunction of well-matched band structures noticeably facilitates the photo-generated charge transport/separation efficiency, reduces the recombination rates and widens the visible-light fascination which could advantageous to upgrading photocatalytic action with superior redox ability. Especially, the probable Z-scheme photocatalytic mechanism pathway is also elucidated in detail based on the quenching results. Hence, this work delivers a facile and hopeful candidate for contaminated water remediation via visible-light photocatalysis over the efficient g-CN-based catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116574DOI Listing

Publication Analysis

Top Keywords

composite heterojunction
8
z-scheme photocatalytic
8
cobalt oxide
4
oxide coupled
4
coupled graphitic
4
graphitic carbon
4
carbon nitride
4
nitride composite
4
heterojunction efficient
4
efficient z-scheme
4

Similar Publications

Ultrasmall MoC-MoO Heterojunction Coupled with Nitrogen-Doped Reduced Graphene for Boosting the Deep Oxidative Desulfurization of Fuel Oils.

Langmuir

September 2025

Engineering Technology Research Center of Preparation and Application of Industrial Ceramics of Anhui Province, Engineering Research Center of High-frequency Soft Magnetic Materials and Ceramic Powder Materials of Anhui Province, School of Chemistry and Material Engineering, Chaohu University, Chaoh

In this study, a MoC-MoO@NCrGO-900 composite catalyst comprising two-dimensional nitrogen-doped reduced graphene oxide (NCrGO) and ultrasmall molybdenum carbide-molybdenum dioxide (MoC-MoO) heterojunctions was synthesized. The optimized catalyst exhibited an outstanding oxidative desulfurization (ODS) performance. Specifically, a model oil containing 4000 ppm sulfur was completely desulfurized within 30 min, with a desulfurization efficiency of 98.

View Article and Find Full Text PDF

Selective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.

View Article and Find Full Text PDF

The persistent presence of Metronidazole (MTZ), a commonly used antibiotic, in water bodies is a serious environmental and health concern because of its genotoxic and carcinogenic potential. Here, we report an effective visible-light photocatalyst system comprising an S-scheme glycine-modified TiO/FeO heterojunction immobilized on chitosan-polyacrylonitrile nanofibers. The photocatalyst nanocomposite was synthesized through a sol-gel and ultrasonication process coupled with electrospinning-assisted immobilization.

View Article and Find Full Text PDF

Synergistically Enhanced NiCo(OH)@NiS Heterojunction Catalyst for High-Performance Ethanol Electrooxidation.

ACS Appl Mater Interfaces

September 2025

State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Coupling the ethanol electrooxidation reaction (EOR) with the hydrogen evolution reaction is an effective way to obtain green energy. Although Ni-based catalysts have the characteristics of low cost and good stability, meanwhile, the activity needs to be further improved. Here, we report a Ni-based heterojunction EOR catalyst, NiCo(OH)@NiS, composed by two phases of NiS and NiCo(OH).

View Article and Find Full Text PDF

Bimetallic Sulfide Attached to MnCdS Induces Electron Transfer to Form S-Scheme Heterojunction to Promote Efficient Photocatalytic Hydrogen Evolution.

Langmuir

September 2025

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.

A simple solvothermal method was used in this paper. ZnCoS (ZCS) nanoparticles were smoothly synthesized by this method and loaded on the external surface of MnCd0S (MCS) to form an S-scheme heterojunction. A comparative evaluation was performed with two other single catalysts, and the compound catalyst MCS/ZCS achieved great gain in the process of catalytic action of H generated under sunlight.

View Article and Find Full Text PDF