98%
921
2 minutes
20
The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited β-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with β-glucosidase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390414 | PMC |
http://dx.doi.org/10.1007/s00253-023-12627-9 | DOI Listing |
ISME Commun
January 2025
Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States.
Human excrement composting (HEC) is a sustainable strategy for human excrement (HE) management that recycles nutrients and mitigates health risks while reducing reliance on freshwater, fossil fuels, and fertilizers. A mixture of HE and bulking material was collected from 15 composting toilets and composted as 15 biological replicates in modified 19-liter buckets under mesophilic conditions with weekly sampling for one year. We hypothesized that (i) the microbiome of 1 year old compost would resemble that of a soil and/or food and landscape waste compost microbiome more closely than the original HE; and (ii) the human fecal indicators, and , would be undetectable after 52 weeks using qPCR and culturing.
View Article and Find Full Text PDFPLoS One
August 2025
Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, Hubei, P.R.China.
Background: Composting is a transformation and biodegradation process that converts organic biomass into valuable products while also removing antimicrobial resistance genes (ARGs). Promoting lignocellulose biodegradation is essential for enhancing composting efficiency and improving the quality of compost derived from agricultural organic waste. This study aims to explore the effects of cellulase and xylanase on the composting process of cow manure, with a focus on their impact on key physicochemical properties, microbial communities, and antibiotic resistance genes (ARGs).
View Article and Find Full Text PDFMolecules
August 2025
Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland.
Not all produced compost meets established quality standards, often resulting in environmental challenges. This study investigated the potential of using mature compost as a feedstock for biochar production, with a focus on evaluating the gas adsorption properties of the resulting biochars. Mature compost was utilized as a substrate, and the pyrolysis process involved heating samples within a temperature range of 400-650 °C, at 50 °C intervals, with heating rates of 10 °C·min, 15 °C·min, or 20 °C·min for a duration of 60 min.
View Article and Find Full Text PDFMicroorganisms
July 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
Biodegradation is a green and efficient method for lignin depolymerization and conversion. In order to screen potential bacterial strains for efficient lignin degradation, composts of cow dung and wheat straw were prepared, and the dynamic changes in the predicted bacterial community structure and function in different periods of the composts were investigated. Then, bacteria with an efficient lignin degradation ability were finally screened out from the compost samples.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2025
Department of Water Resources Management, Ndata School of Climate and Earth Sciences, Malawi University of Science and Technology, Limbe P.O. Box 5196, Malawi.
The use of untreated livestock manure in urban agriculture sustains soil fertility but risks disseminating antimicrobial resistance (AMR) in resource-limited settings. This study characterized antibiotic-resistant bacteria (ARB) prevalence across manure-soil-vegetable pathways in Blantyre, Malawi. Using a cross-sectional design, we collected 35 samples (poultry/pig manure, farm/home soils, subsp.
View Article and Find Full Text PDF