Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gene KIAA0319-Like (KIAA0319L) is thought to confer susceptibility for developmental dyslexia. Dyslexia may be caused by alterations in neuronal migration, and in utero knockdown of KIAA0319L in rats indicated migration errors. However, studies carried out with KIAA0319L knockout mice did not reveal an altered neuronal migration phenotype. Gene knockout may activate compensatory mechanisms to buffer against genetic mutations during development. Here we assessed the role of KIAA0319L on migrating neurons in the chick developing tectum. Whole mount in situ hybridization was performed for KIAA0319L on embryonic day (E)3 - E5 chick embryos and in situ hybridization on sections was performed at later stages. The specificity and efficiency of engineered microRNA (miRNA) constructs targeting KIAA0319L for knocking down KIAA0319L were verified. miRNAs were electroporated into E5 chick optic tecta. Our studies demonstrate that KIAA0319L is expressed in the developing chick visual system, as well as in the otic vesicles. Knockdown of KIAA0319L in the optic tectum results in abnormal neuronal migration, strengthening the argument that KIAA0319L is involved in this developmental process.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.230052pmDOI Listing

Publication Analysis

Top Keywords

neuronal migration
16
kiaa0319l
10
developing chick
8
chick visual
8
visual system
8
knockdown kiaa0319l
8
situ hybridization
8
migration
5
chick
5
dyslexia-associated gene
4

Similar Publications

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

Extensive peripheral nerve injuries often lead to the loss of neurological function due to slow regeneration and limited recovery over large gaps. Current clinical interventions, such as nerve guidance conduits (NGCs), face challenges in creating biomimetic microenvironments that effectively support nerve repair. The developed GrooveNeuroTube is composed of hyaluronic acid methacrylate and gelatin methacrylate hydrogel, incorporating active agents (growth factors and antibacterial agents) encapsulated within an NGC conduit made of 3D-printed PCL grid fibers.

View Article and Find Full Text PDF

Regulating the differentiation of implanted stem cells into neurons is crucial for stem cell therapy of traumatic brain injury (TBI). However, due to the migratory nature of implanted stem cells, precise and targeted regulation of their fate remains challenging. Here, neural stem cells (NSCs) are bio-orthogonally engineered with hyaluronic acid methacryloyl (HAMA) microsatellites capable of sustained release of differentiation modulators for targeted regulation of their neuronal differentiation and advanced TBI repair.

View Article and Find Full Text PDF

Network Pharmacology of miR-146a-5p as a Potential Anti-Inflammatory Agent in Preventing Alzheimer's Disease.

Curr Alzheimer Res

September 2025

School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia.

Introduction: Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can be used to treat several inflammatory diseases, as well as promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.

View Article and Find Full Text PDF

Epigenetic changes and neurogenesis associated with socio-sexual behaviors.

Neurosci Biobehav Rev

September 2025

Instituto de Neurobiología, Universidad Nacional Autónoma de México.

Epigenetic mechanisms are essential in neurogenesis during development and adulthood. DNA methylation, histone post-translational modifications, and non-coding RNAs regulate gene expression to maintain the neural stem cell pool and direct the fate of newborn neurons by modulating cell proliferation, migration, differentiation, maturation, and survival. Adult neurogenesis exhibits bidirectional interactions with non-social and socio-sexual factors such as sexual behavior, mate recognition, pair bonding, parental behavior, and offspring recognition.

View Article and Find Full Text PDF