98%
921
2 minutes
20
The advent of immunotherapy has marked a new era in cancer treatment, offering significant clinical benefits. Cell membrane as drug delivery materials has played a crucial role in enhancing cancer therapy because of their inherent biocompatibility and negligible immunogenicity. Different cell membranes are prepared into cell membrane nanovesicles (CMNs), but CMNs have limitations such as inefficient targeting ability, low efficacy, and unpredictable side effects. Genetic engineering has deepened the critical role of CMNs in cancer immunotherapy, enabling genetically engineered-CMN (GCMN)-based therapeutics. To date, CMNs that are surface modified by various functional proteins have been developed through genetic engineering. Herein, a brief overview of surface engineering strategies for CMNs and the features of various membrane sources is discussed, followed by a description of GCMN preparation methods. The application of GCMNs in cancer immunotherapy directed at different immune targets is addressed as are the challenges and prospects of GCMNs in clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502869 | PMC |
http://dx.doi.org/10.1002/advs.202302131 | DOI Listing |
Cancer Rep (Hoboken)
September 2025
Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Centre of Soochow University, Suzhou, Jiangsu, China.
Background: Epigenetic regulation significantly affects immune responses in lung adenocarcinoma (LUAD). However, the role of RNA N6-methyladenosine (m6A) modification, especially in obstructive sleep apnea-hypopnea syndrome (OSAHS) within LUAD, is not well understood.
Methods: This study examined m6A modification patterns in 973 LUAD patients using 23 regulatory genes.
Med Sci Monit
August 2025
Independent Laboratory of Translational Medicine, Medical University of Lublin, Lublin, Poland.
Epithelial ovarian cancer (EOC) remains a leading cause of gynecologic cancer mortality, with high rates of recurrence and chemoresistance. Advances in understanding the molecular biology of EOC, particularly BRCA mutations and homologous recombination deficiency (HRD), have led to more targeted therapies. This review provides an updated summary of systemic treatments for EOC, with an emphasis on personalized therapy approaches and emerging therapeutic strategies.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Urology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
Objectives: To identify immunosuppressive neutrophil subsets in patients with prostate cancer (PCa) and construct a risk prediction model for prognosis and immunotherapy response of the patients based on these neutrophil subsets.
Methods: Single-cell and transcriptome data from PCa patients were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Neutrophil subsets in PCa were identified through unsupervised clustering, and their biological functions and effects on immune regulation were analyzed by functional enrichment, cell interaction, and pseudo-time series analyses.
Croat Med J
August 2025
Mehrdad Payandeh, Internal Medicine Department, School of Medicine, Kermanshah University of Medical Sciences, Beheshti Blvd, 83VX+PCM, Kermanshah, Iran,
Locally advanced renal cell carcinoma (RCC) presents significant therapeutic challenges, particularly in resource-limited settings with restricted access to new therapies. This report describes a new exploratory multimodal therapeutic approach for a patient with locally advanced clear cell RCC (ccRCC) with adrenal and lymph node metastases. A 45-year-old woman presented with an incidentally discovered 9-cm mass in the left kidney, which was later diagnosed as grade-2 ccRCC with adrenal and lymph node involvement.
View Article and Find Full Text PDFClin Exp Immunol
September 2025
Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT.
Since its discovery in the late 18th Century, the role of vaccination in preventing death and disease has expanded across many infectious diseases and cancer. Key to our understanding of vaccine immunogenicity and efficacy is knowledge of the immune system itself. Inborn Errors of Immunity (IEI) represent a heterogeneous group of disorders characterised by impaired function of the immune system.
View Article and Find Full Text PDF