Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Individual cells give rise to diverse cell lineages during the development of multicellular organisms. Understanding the contribution of these lineages to mature organisms is a central question of developmental biology. Several techniques to document cell lineages have been used, from marking single cells with mutations that express a visible marker to generating molecular bar codes by CRISPR-induced mutations and subsequent single-cell analysis. Here, we exploit the mutagenic activity of CRISPR to allow lineage tracing within living plants with a single reporter. Cas9-induced mutations are directed to correct a frameshift mutation that restores expression of a nuclear fluorescent protein, labelling the initial cell and all progenitor cells with a strong signal without modifying other phenotypes of the plants. Spatial and temporal control of Cas9 activity can be achieved using tissue-specific and/or inducible promoters. We provide proof of principle for the function of lineage tracing in two model plants. The conserved features of the components and the versatile cloning system, allowing for easy exchange of promoters, are expected to make the system widely applicable.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.16378DOI Listing

Publication Analysis

Top Keywords

lineage tracing
12
tracing living
8
living plants
8
cell lineages
8
versatile crispr-based
4
crispr-based system
4
system lineage
4
plants
4
plants individual
4
individual cells
4

Similar Publications

Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study pathophysiologic cell function.

View Article and Find Full Text PDF

The global burden of kidney disease displays marked sexual dimorphism. Lineage tracing and single-cell RNA-sequencing revealed that starting from puberty, estrogen signaling in female mice supports self-renewal and differentiation of renal progenitors to increase filtration capacity, reducing sensitivity to glomerular injury compared with that of males. This phenomenon accelerated as female kidneys adapted to the workload of pregnancy.

View Article and Find Full Text PDF

Lineage-specific defence systems of pandemic .

Philos Trans R Soc Lond B Biol Sci

September 2025

Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.

Cholera remains a significant global health burden. The causative agent responsible for the ongoing cholera pandemic, which began in 1961, is the seventh pandemic El Tor (7PET) lineage of . Over the past century, lineages of have been traced using phage typing schemes, DNA hybridization on microarrays and, more recently, comparative genomics enabled by next-generation sequencing.

View Article and Find Full Text PDF

Background: In August 1995, necropsies on post-weaning piglets from the CA-CART farm in the province of Cartago, Costa Rica, revealed respiratory lesions, pleuritis, peritonitis, and arthritis. Skin lesions were also observed, progressing to scabs. A subsequent outbreak in 1996 prompted antibiotic administration.

View Article and Find Full Text PDF

Neoantigen-specific T cells specifically recognize tumor cells and are critical for cancer immunotherapies. However, the transcriptional program controlling the cell fate decisions by neoantigen-specific T cells is incompletely understood. Here, using joint single-cell transcriptome and TCR profiling, we mapped the clonal expansion and differentiation of neoantigen-specific CD8 T cells in the tumor and draining lymph node in mouse prostate cancer.

View Article and Find Full Text PDF