A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microfluidic tapered aspirators for mechanical characterization of microgel beads. | LitMetric

Microfluidic tapered aspirators for mechanical characterization of microgel beads.

Soft Matter

Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, we report a microfluidic approach for the measurement of mechanical properties of spherical microgel beads. This technique is analogous to tapered micropipette aspiration, while harnessing the benefits of microfluidics. We fabricate alginate-based microbeads and determine their mechanical properties using the microfluidic tapered aspirators. Individual microgel beads are aspirated and trapped in tapered channels, the deformed equilibrium shape is measured, and a stress balance is used to determine the Young's modulus. We investigate the effect of surface coating, taper angle, and bead diameter and find that the measured modulus is largely insensitive to these parameters. We show that the bead modulus increases with alginate concentration and follows a trend similar to that of the modulus measured using standard uniaxial compression. The critical pressure to squeeze out the beads from the tapered aspirators was found to depend on both the modulus and the bead diameter. Finally, we demonstrate how temporal changes in bead moduli due to enzymatic degradation of the hydrogel could be quantitatively determined. The results from this study highlight that the microfluidic tapered aspirators are a useful tool to measure hydrogel bead mechanics and have the potential to characterize dynamic changes in mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm01357fDOI Listing

Publication Analysis

Top Keywords

tapered aspirators
16
microfluidic tapered
12
microgel beads
12
mechanical properties
12
bead diameter
8
tapered
5
modulus
5
bead
5
microfluidic
4
aspirators
4

Similar Publications