Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology. At 3 months of age, prior to the onset of memory impairments, we found early hyperexcitability in MECII stellate and pyramidal cells' intrinsic properties, but this was balanced by a relative reduction in synaptic excitation (E) compared to inhibition (I), suggesting intact homeostatic mechanisms regulating activity in MECII. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in the synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsically and synaptically generated excitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this post-symptomatic time point. Together, these data suggest that the breakdown in homeostatic excitability mechanisms in MECII stellate cells may contribute to the emergence of memory deficits in AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312508PMC
http://dx.doi.org/10.1101/2023.05.30.542838DOI Listing

Publication Analysis

Top Keywords

mecii stellate
20
stellate cells
16
medial entorhinal
8
entorhinal cortex
8
3xtg mouse
8
mouse model
8
alzheimer's disease
8
intrinsic excitability
8
mec layer
8
mecii
8

Similar Publications

Introduction: The gut microbiota plays a critical role in regulating brain structure and function via the microbiota-gut-brain axis. Antibiotic-induced gut dysbiosis (AIGD) has been linked to neuroanatomical changes and cognitive deficits. However, its impact on neuronal morphology in layer II of the medial entorhinal cortex (mECII), a region central to spatial memory, remains poorly understood.

View Article and Find Full Text PDF

Introduction: Mutations in the methyl-CpG-binding protein-2 gene (), which cause Rett syndrome (RTT), disrupt neuronal activity; however, the impact of the loss-of-function on the cytoarchitecture of medial entorhinal cortex layer II (MECII) neurons-crucial for spatial memory and learning-remains poorly understood.

Methods: In this study, we utilized Golgi staining and neuron tracing in the 2 mouse model of RTT to investigate the pyramidal and stellate cell alterations in MECII.

Results And Discussion: Our findings revealed that pyramidal cells displayed a significant reduction in apical dendritic length, soma size, and spine density, while basal dendrites showed increased dendritic complexity and branching.

View Article and Find Full Text PDF

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in hippocampus, but less is known about changes in medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at 3 and 10 months of age in the 3xTg mouse model of AD pathology, using male and female mice.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology.

View Article and Find Full Text PDF