98%
921
2 minutes
20
Cesium-134 and -137 are prevalent, long-lived, radio-toxic contaminants released into the environment during nuclear accidents. Large quantities of insoluble, respirable Cs-bearing microparticles (CsMPs) were released into the environment during the Fukushima Daiichi nuclear accident. Monitoring for CsMPs in environmental samples is essential to understand the impact of nuclear accidents. The current detection method used to screen for CsMPs (phosphor screen autoradiography) is slow and inefficient. We propose an improved method: real-time autoradiography that uses parallel ionization multiplier gaseous detectors. This technique permits spatially resolved measurement of radioactivity while providing spectrometric data from spatially heterogeneous samples-a potential step-change technique for use after nuclear accidents for forensic analysis. With our detector configuration, the minimum detectable activities are sufficiently low for detecting CsMPs. Further, for environmental samples, sample thickness does not detrimentally affect detector signal quality. The detector can measure and resolve individual radioactive particles ≥465 μm apart. Real-time autoradiography is a promising tool for radioactive particle detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308591 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00728 | DOI Listing |
J Control Release
September 2025
Research Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom. Electronic address:
The blood-brain barrier (BBB) significantly hinders the treatment of central nervous system (CNS) disorders and brain tumors with intact BBB by restricting the entry of most therapeutic agents, including small-molecule drugs and particularly larger macromolecules. Liposomal formulations, such as PEGylated liposomes with long blood half-lives, high drug-carrying capacity, and reduced off-site toxicity, can be useful for brain drug delivery, but their large size often limits BBB penetration. A novel liposomal doxorubicin formulation(Talidox®) with a smaller size (~36 nm, determined by TEM), increased blood circulation half-life (median reported half-life 96 h), and better stability than previous clinical formulations, can be a suitable choice for brain delivery.
View Article and Find Full Text PDFNeurosci Appl
June 2024
Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
The N-methyl-D-aspartate receptor (NMDA-R) antagonist S-ketamine has been approved as a rapid-acting antidepressant for treatment-resistant depression (TRD). The antidepressant mechanisms have not fully been elucidated; however, alterations of synaptic proteins and mechanisms may play a vital role. Here, we study the effect of a single subanaesthetic dose of 15 mg/kg S-ketamine vs saline 1 h after administration in the Wistar Kyoto rat model of depression on the density of synaptic vesicle glycoprotein 2A (SV2A) and the metabotropic glutamate receptor 5 (mGluR5) using [H]UCB-J and [H]MPEPγ autoradiography, respectively, compared with control Wistar Hannover rats.
View Article and Find Full Text PDFInt J Mol Sci
May 2025
MARGen (Molecular Assisted Reproduction and Genetics) Clinic, Calle Gracia, 36, 18002 Granada, Spain.
There are two types of noninvasive biomarkers of human embryo developmental potential: those based on a direct assessment of embryo morphology over time and those using spent media after embryo in vitro culture as source of information. Both are derived from previously acquired knowledge on different aspects of pre-implantation embryo development. These aspects include embryo morphology and kinetics, chromosomal ploidy status, metabolism, and embryonic gene transcription, translation, and expression.
View Article and Find Full Text PDFAquat Toxicol
February 2025
ANSTO, Nuclear Science and Technology Division, Lucas Heights, NSW 2234, Australia.
Radioactive Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
August 2024
Department of Nuclear Medicine, Peking Union Medical College Hospital & Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
Riboflavin transporter 3 (RFVT3) represents a potential cardioprotective biotarget in energetic metabolism reprogramming after myocardial infarction/reperfusion (MI/R). This study investigated the feasibility of noninvasive real-time quantification of RFVT3 expression after MI/R with an radiolabeled probe F-RFTA in a preclinical rat model of MI/R. The tracer F-RFTA was radio-synthesized manually and characterized on the subjects of radiolabeling yield, radiochemical purity, and stability .
View Article and Find Full Text PDF