Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phthalic acid esters (PAEs) are highly toxic compounds and can disrupt the hormonal balance of human, animal, and aquatic organisms. Due to the hazardous nature of such compounds, their removal from constituent wastewater before discharging into the environment is mandatory. This study focused on the biodegradation of dimethyl phthalates (DMP), di-n-butyl phthalates (DBP), and di-n-octyl phthalates (DnOP) by sp. in a batch system. Initially, five different concentrations of DBP, DMP, and DnOP (200-1000 mg/L) were chosen individually as the sole carbon source to examine their effect on the biodegradation and biomass growth of sp. Complete degradation of DBP and DMP was achieved up to 1000 mg/L initial concentration within 96 h, whereas in case of DnOP, the degradation value was only 83.5% at 120 h for the same initial concentration. The experimental data were fitted into various substrate inhibition kinetic models, and accurate predicted values of degradation of all the three PAEs were obtained using the Tiesser model in comparison with other models, which yielded the highest and lowest R and SSE values of 0.99 and 0.02 × 10, respectively. In addition, the phytotoxicity of PAEs degraded samples was assessed and more than 50% germination index value was observed for DMP and DBP degraded sample which established the treatment efficiency of sp. in degrading DMP and DBP. Hence, high DMP and DEP degradation and phytotoxicity removal efficiency of sp. demonstrate its potential for the treatment of PAEs contaminated wastewater.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321200PMC
http://dx.doi.org/10.1080/21655979.2023.2229094DOI Listing

Publication Analysis

Top Keywords

batch system
8
dbp dmp
8
initial concentration
8
dmp dbp
8
dmp
6
dbp
5
biodegradation low
4
low medium
4
medium high
4
high molecular
4

Similar Publications

Evidence-based practices (EBPs) are most effective when they are delivered with a high degree of fidelity, or as they are intended to be delivered. Because clinicians often deviate from fidelity, it is important to monitor EBP fidelity over time to guide corrective actions. However, little is known about current fidelity monitoring practices in community behavioral health care.

View Article and Find Full Text PDF

CrossNeXt: ConvNeXt-based cross-teaching with entropy minimization for semi-supervised liver segmentation from abdominal MRI.

Comput Med Imaging Graph

August 2025

Academy for Engineering and Technology, Fudan University, Shanghai, 200433, People's Republic of China; Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China; Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases,

Recent advancements in artificial intelligence have significantly enhanced the efficiency of abdominal MRI segmentation, thereby improving the screening and diagnosis of liver diseases. However, accurate precise liver segmentation in MRI remains a challenging task due to the high variability in liver morphology and the limited availability of high-quality annotated datasets. To address these challenges, this study presents an advanced semi-supervised learning framework that integrates cross-teaching with pseudo-label generation and intra-batch entropy minimization.

View Article and Find Full Text PDF

Skin-adaptive focused flexible micromachined ultrasound transducers for wearable cardiovascular health monitoring.

Sci Adv

September 2025

State Key Laboratory for Manufacturing System Engineering, State Industry-Education Integration Center for Medical Innovations, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Shaanxi Innovation Center for Special Sensing and Testing Technology in Extreme En

Continuous monitoring of cardiovascular vital signs can reduce the incidence and mortality of cardiovascular diseases, yet cannot be implemented by current technologies because of device bulkiness and rigidity. Here, we report self-adhesive and skin-conformal ultrasonic transducer arrays that enable wearable monitoring of multiple hemodynamic parameters without interfering with daily activities. A skin-adaptive focused ultrasound method with rational array design is proposed to implement measurement under wide ranges of skin curvatures and depths with improved sensing performances.

View Article and Find Full Text PDF

The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

Beilstein J Nanotechnol

August 2025

Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.

View Article and Find Full Text PDF

The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.

View Article and Find Full Text PDF