98%
921
2 minutes
20
High throughput screening of synthetic compounds against vital enzymes is the way forward for the determination of potent enzyme inhibitors. In-vitro high throughput library screening of 258 synthetic compounds (comp. 1-258), was performed against α-glucosidase. The active compounds out of this library were investigated for their mode of inhibition and binding affinities towards α-glucosidase through kinetics as well as molecular docking studies. Out of all the compounds selected for this study, 63 compounds were found active within the IC50 range of 3.2 μM to 50.0 μM. The most potent inhibitor of α-glucosidase out of this library was the derivative of an oxadiazole (comp. 25). It showed the IC50 value of 3.23 ± 0.8 μM. Other highly active compounds were the derivatives of ethyl-thio benzimidazolyl acetohydrazide with IC50 values of 6.1 ± 0.5 μM (comp. 228), 6.84 ± 1.3 μM (comp. 212), 7.34 ± 0.3 μM (comp. 230) and 8.93 ± 1.0 μM (comp. 210). For comparison, the standard (acarbose) showed IC50 = 378.2 ± 0.12 μM. Kinetic studies of oxadiazole (comp. 25) and ethylthio benzimidazolyl acetohydrazide (comp. 228) derivatives indicated that Vmax and Km, both change with changing concentrations of inhibitors which suggests an un-competitive mode of inhibition. Molecular docking studies of these derivatives with the active site of α-glucosidase (PDB ID:1XSK), revealed that these compounds mostly interact with acidic or basic amino acid residues through conventional hydrogen bonds along with other hydrophobic interactions. The binding energy values of compounds 25, 228, and 212 were -5.6, -8.7 and -5.4 kcal.mol-1 whereas RMSD values were 0.6, 2.0, and 1.7 Å, respectively. For comparison, the co-crystallized ligand showed a binding energy value of -6.6 kcal.mol-1 along with an RMSD value of 1.1 Å. Our study predicted several series of compounds as active inhibitors of α-glucosidase including some highly potent inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313066 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0286159 | PLOS |
Am J Physiol Regul Integr Comp Physiol
April 2025
Department of Thoracic Surgery, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China.
We aimed to explore the role of amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.
View Article and Find Full Text PDFGen Comp Endocrinol
November 2022
Department of Global Environmental Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-5193, Japan.
Comp Biochem Physiol Part D Genomics Proteomics
June 2017
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Nekouzskii raion, Yaroslavl oblast, Russia; A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia.
One of the most important functions of plasma proteins in vertebrates is their participation in osmotic homeostasis in the organism. Modern concepts about plasma proteins and their capillary filtration are based on a model of large monomeric proteins that are able to penetrate the interstitial space. At the same time, it was revealed that a considerable amount of oligomeric complexes are present in the low-molecular-weight (LM) protein fraction in the extracellular fluids of fishes.
View Article and Find Full Text PDF