Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Organic solid-state materials with long-lived room-temperature phosphorescence (RTP) emission have been widely developed and applied in many fields, while works in developing solution-phase phosphorescence materials were rarely reported owing to the ultrafast nonradiative relaxation and quenchers from the liquid medium. Herein, we report an ultralong RTP system in water through assembly based on a β-cyclodextrin host and -biphenylboronic acid guest with a lifetime of 1.03 s under ambient conditions. It is worth noting that the long-lived phosphorescence depends on the host-guest inclusion as well as intermolecular hydrogen bonding interactions, which suppress nonradiative relaxation and avoid quenchers effectively. Furthermore, the addition of fluorescent dyes to the assembly system achieved the tuning of the afterglow color through radiative energy transfer of reabsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c04971 | DOI Listing |