Plassembler: an automated bacterial plasmid assembly tool.

Bioinformatics

Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Summary: With recent advances in sequencing technologies, it is now possible to obtain near-perfect complete bacterial chromosome assemblies cheaply and efficiently by combining a long-read-first assembly approach with short-read polishing. However, existing methods for assembling bacterial plasmids from long-read-first assemblies often misassemble or even miss bacterial plasmids entirely and accordingly require manual curation. Plassembler was developed to provide a tool that automatically assembles and outputs bacterial plasmids using a hybrid assembly approach. It achieves increased accuracy and computational efficiency compared to the existing gold standard tool Unicycler by removing chromosomal reads from the input read sets using a mapping approach.

Availability And Implementation: Plassembler is implemented in Python and is installable as a bioconda package using 'conda install -c bioconda plassembler'. The source code is available on GitHub at https://github.com/gbouras13/plassembler. The full benchmarking pipeline can be found at https://github.com/gbouras13/plassembler_simulation_benchmarking, while the benchmarking input FASTQ and output files can be found at https://doi.org/10.5281/zenodo.7996690.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326302PMC
http://dx.doi.org/10.1093/bioinformatics/btad409DOI Listing

Publication Analysis

Top Keywords

bacterial plasmids
12
assembly approach
8
bacterial
5
plassembler automated
4
automated bacterial
4
bacterial plasmid
4
plasmid assembly
4
assembly tool
4
tool summary
4
summary advances
4

Similar Publications

Escherichia coli strain O55 contains two cryptic plasmids that depend on each other to replicate.

Arch Microbiol

September 2025

División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.

Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.

View Article and Find Full Text PDF

Gepotidacin, a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial, was noninferior to nitrofurantoin in two pivotal trials (EAGLE-2 and EAGLE-3) in females with uncomplicated urinary tract infections (uUTIs). Using pooled data, gepotidacin activity and clinical efficacy were evaluated for subsets of molecularly characterized isolates in the microbiological Intent-to-Treat population. The subsets of isolates were characterized based on phenotypic/MIC criteria; all microbiological failure isolates were also characterized.

View Article and Find Full Text PDF

The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).

View Article and Find Full Text PDF

Listeria monocytogenes is pervasive in agricultural environments and difficult to eradicate from food-processing facilities. Consequently, various foods become contaminated, posing health risks to immunocompromised individuals. This surveillance study aimed to enhance the understanding of the genetic diversity, virulence, plasmid content, sanitizer tolerance, and antibiotic resistance of L.

View Article and Find Full Text PDF

Introduction: are commonly found in intramammary infections associated with bovine subclinical mastitis in dairy cattle, yet their genomic diversity and antimicrobial resistance dynamics remain poorly characterized, particularly in African settings.

Methods: This study presents a comparative genomic analysis of 17 isolates from South Africa, including five newly sequenced bovine mastitis strains and twelve porcine-derived genomes retrieved from GenBank. analysis using multilocus sequence typing (MLST), virulence genes, antibiotic resistance genes and plasmids replicon types were used to characterise these isolates.

View Article and Find Full Text PDF