98%
921
2 minutes
20
Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10301571 | PMC |
http://dx.doi.org/10.3390/jof9060637 | DOI Listing |
iScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
Among eukaryotes, Rab GTPases are critical for intracellular membrane trafficking and possess various functions. Oomycetes, responsible for many devastating plant diseases, pose a significant threat to global agriculture. However, the functions of Rab GTPases in oomycetes are largely uncharted.
View Article and Find Full Text PDFJ Neuroendocrinol
September 2025
Center for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
The maintenance of extracellular fluid (ECF) osmolality and sodium concentration ([Na]) near optimal "set point" values sustains physiological functions and prevents pathological states such as hypo- and hypernatremia. The peptide hormones vasopressin (antidiuretic hormone) and oxytocin (a natriuretic hormone in rats) play key roles in this process. These hormones are synthesized by hypothalamic magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis and are released into the systemic circulation in response to rises in ECF osmolality or [Na].
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Chongqing Ecological and Environmental Monitoring Center, Chongqing 401147, PR China. Electronic address:
Plastics degradation generates microplastics (MPs), posing a risk to soil function and organisms. Currently, the impact of MPs derived from different polymers remains poorly understood. In this study, the effects of three polymers (polypropylene (PP), polylactic acid (PLA), and polybutylene adipate terephthalate (PBAT)) were investigated at environmentally relevant levels (0, 0.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Biomedicine, University of Bergen, Bergen 5009, Norway.
When pathogenic bacteria colonize a wound, they can create an alkaline ecological niche that selects for their survival by creating an inflammatory environment restricting healthy wound healing to proceed. To aid healing, wound acidification has been exploited to disrupt this process and stimulate fibroblast growth, increase wound oxygen concentrations, minimize proteolytic activity, and restimulate the host immune system. Within this study, we have developed cobalt-doped carbon quantum dot nanoparticles that work together with mild acetic acid, creating a potent synergistic antimicrobial therapy.
View Article and Find Full Text PDF