A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bayesian model selection for generalized linear mixed models. | LitMetric

Bayesian model selection for generalized linear mixed models.

Biometrics

Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We consider covariance structures for the random effects that are widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs analytically, we approximate the integrated likelihood function using a pseudo-likelihood approach. Our Bayesian approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies with Poisson GLMMs with spatial random effects and overdispersion random effects show that our approach performs favorably when compared to widely used competing Bayesian methods including deviance information criterion and Watanabe-Akaike information criterion. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in the R package GLMMselect that is available on CRAN.

Download full-text PDF

Source
http://dx.doi.org/10.1111/biom.13896DOI Listing

Publication Analysis

Top Keywords

random effects
20
bayesian model
8
model selection
8
generalized linear
8
linear mixed
8
mixed models
8
flat prior
8
prior fixed
8
fixed effects
8
approach
7

Similar Publications