Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chronic graft-versus-host disease (cGVHD) is a multiorgan syndrome with clinical features resembling those of autoimmune diseases. Thus, understanding commonalities in the pathophysiology of cGVHD and autoimmune diseases, such as the presence of disease-risk HLA alleles, is imperative for developing novel therapies against cGVHD. Alloantibodies against H-Y antigens encoded on the Y-chromosome are well-described risk factors for cGVHD in female-to-male transplantation. However, because H-Y antigens generally localize intracellularly in the male reproductive organs, how they emerge at affected organ levels remains elusive. Here, by analyzing nationwide registry data stratified per donor-recipient sex, we identified specific HLA class II alleles that contributed to susceptibility to male cGVHD after transplantation from HLA-identical female siblings (HLA-DRB1∗15:02: hazard ratio, 1.28; 95% confidence interval, 1.03-1.58; P = .025). Coexpression of HLA-DRB1∗15:02 efficiently transported full-length H-Y antigens, especially DBY, to the surface. The presence of alloantibodies against DBY/HLA class II complexes significantly predicted the occurrence of cGVHD (68.8% vs 31.7% at 1 year; P = .002). Notably, the ability of HLA class II molecules to transport and present DBY to alloantibodies was closely associated with the susceptibility of HLA class II alleles to cGVHD. DBY specifically colocalized with HLA class II molecules on the dermal vascular endothelium in cGVHD and provoked complement-dependent cytotoxicity. Moreover, these complexes were observed in some male leukemic cells. Altogether, these findings suggest that vascular endothelial cells facilitate alloantibody-mediated cGVHD and highlight that alloantibodies against DBY/HLA class II complexes could be common targets for cGVHD and a graft-versus-leukemia effect.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2023019799DOI Listing

Publication Analysis

Top Keywords

hla class
16
dby/hla class
12
class complexes
12
h-y antigens
12
cgvhd
10
autoimmune diseases
8
class alleles
8
alloantibodies dby/hla
8
class molecules
8
class
7

Similar Publications

Eplet mismatch analysis in kidney transplantation: from concept to clinical practice.

Clin Transplant Res

September 2025

Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Eplet mismatch analysis offers a refined approach to assessing donor-recipient compatibility in kidney transplantation, surpassing conventional antigen-level human leukocyte antigen (HLA) matching in predicting immunologic outcomes. By identifying polymorphic amino acid residues on HLA molecules recognized by B cell receptors, this method quantifies immunologic risk. Clinical studies demonstrate that high eplet mismatch loads, particularly at HLA-DQ, are strongly associated with donor-specific antibody development, antibody-mediated rejection, and reduced graft survival.

View Article and Find Full Text PDF

Refractory cytomegalovirus (CMV) infection is a severe complication following umbilical cord blood transplantation (UCBT). Antiviral agents, the standard first-line therapy, are limited by toxicity and resistance without robust T-cell immunity. We evaluated third-party donor (TPD)-derived CMV-specific T cells (CMVSTs) as a treatment option.

View Article and Find Full Text PDF

Objective: Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease. Genetic factors may play a pivotal role in determining susceptibility to these disorders. HLA associations with SSc, especially HLA class II, were investigated in different populations but not in Tunisia.

View Article and Find Full Text PDF

A 21-year-old woman had presented to a clinic with a fever 2 days earlier and been prescribed acetaminophen. She subsequently visited the hospital with a skin rash. Laryngeal edema was also observed.

View Article and Find Full Text PDF

Pemphigus vulgaris (PV) is an autoimmune blistering disorder, which is caused by the loss of desmosomal cell-cell adhesion, initiated by the binding of IgG antibodies against the desmosomal components desmoglein (Dsg)1 and Dsg3. Dsg3-reactive CD4 T helper (Th) cells, in particular follicular Th (Tfh) cells, play a central role in autoantibody production by Dsg3-specific B cells. In this study, we challenged the concept that distinct Dsg3-reactive CD4 T cell subsets are critical in PV pathogenesis utilizing phenotypical and functional state-of-the-art ex vivo assays.

View Article and Find Full Text PDF