Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study was conducted to investigate the effects of extrusion, fermentation, and enzymolysis of palm kernel cake on processing quality of pellet feed, nutrient digestibility, and intestinal microbiota of pigs. First, the pretreatment parameters of extrusion, enzymolysis, and fermentation of palm kernel cake were optimized. Then, PKC after three processing techniques were used to prepare pellet feed. A total of 160 crossbred piglets (Duroc × Landrace × Yorkshire) with an average body weight of 28 ± 0.5 kg were used in an 8-wk feeding experiment. Pigs were randomly assigned to five treatments with four replicates per treatment and eight pigs per replicates. The five experimental groups were as follows: basal diet group (whole corn-soybean meal), 10% PKC group (PKC), 10% extrusion PKC group (PPKC), 10% enzymolysis PKC group (EPKC), and 10% fermented PKC group (FPKC), respectively. At the end of the experiment, four pigs from each treatment (randomly collected one pig per pen) were sacrificed by administering a pentobarbital overdose, the gut and blood samples were collected for the quantification analysis of microbiota, hematological parameters, and apparent total tract nutrient digestibility. The results showed that all three processing techniques significantly decreased the contents of crude fiber of PKC (P < 0.01), pulverization rate (P < 0.01), powder content (P < 0.01), and increased the hardness and gelatinization starch of pellet feed (P < 0.05) compared to PKC group. In addition, PPKC significantly improved the dry matter, crude protein, and ether extract content, blood indices and average daily feed intake compared to PKC group (P < 0.01), while the parameters were similar among FPKC, EPKC, and control group (P > 0.01). Furthermore, all three processing techniques significantly increased the Lactobacillus and decreased the Escherichia levels in feces or gut compared to PKC. Collectively, extrusion, fermentation, and enzymolysis of PKC had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota, extrusion exhibited a superior feeding effect compared to fermentation and enzymolysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362929PMC
http://dx.doi.org/10.1093/jas/skad217DOI Listing

Publication Analysis

Top Keywords

pkc group
16
processing techniques
12
palm kernel
12
kernel cake
12
pellet feed
12
nutrient digestibility
12
cake processing
8
processing quality
8
quality pellet
8
feed nutrient
8

Similar Publications

Physical and functional effects of substituting coevolved residues from Ω-loop C of yeast Iso-1-cytochrome c into human cytochrome c.

J Inorg Biochem

September 2025

Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States. Electronic address:

Omega loop C (residues 40-57) of cytochrome c (Cytc) is a common location for naturally-occurring variants of human Cytc that cause thrombocytopenia 4 (THC4). These variants are characterized by significant increases in the intrinsic peroxidase activity of Cytc, which appears to be linked to increased dynamics in Ω-loop D (residues 71-85). The mutations in Ω-loop C enhance the dynamics of Ω-loop D by decreasing the acid dissociation constant of the trigger group (pK) of the alkaline conformational transition.

View Article and Find Full Text PDF

Bryostatin 1, a natural macrolide isolated from , is a potent modulator of protein kinase C (PKC) isoforms with promising anticancer properties. In numerous in vitro studies, bryostatin 1 has been shown to inhibit tumor cell proliferation and induce differentiation and apoptotic cell death in a wide range of cell lines, including leukemia, lymphoma, glioma, and solid tumors such as ovarian and breast cancer. Its antitumor activity, both as monotherapy and in combination with conventional chemotherapy, has been confirmed in in vivo models, where synergistic effects have been observed, including sensitization of tumor cells to cytostatic agents.

View Article and Find Full Text PDF

Premature ovarian insufficiency (POI) and age-related natural-aging ovarian insufficiency (ARNA-OI) pose pressing global health challenges, necessitating effective therapeutic strategies and a deep understanding of their underlying mechanisms. This study investigates how HEP14, a PKC pathway activator, boosts the regenerative potential of human adipose-derived stem cells (hADSCs) for ovarian regeneration. Transcriptome analysis reveals that HEP14 modulates gene expression profile in hADSCs, enhancing their regenerative capacity.

View Article and Find Full Text PDF

Objectives: To explore the mechanism of myocardial toxicity caused by N-methyl-3,4-methyle-nedioxyamphetamine (MDMA), the changes of intracellular calcium oscillation mode and calcium handling proteins during acute exposure to different concentrations of MDMA were detected, and the involvement of nuclear factor κB (NF-κB) and its effect on calcium handling proteins were investigated.

Methods: Primary rat cardiomyocytes were cultured to establish MDMA acute exposure model, and a control group was set up. The MDMA poisoning model was divided into three concentration groups of 10, 100 and 1 000 μmol/L.

View Article and Find Full Text PDF

Ovarian aging profoundly impacts reproductive health and accelerates the overall aging process, yet the development of effective therapeutic strategies remains a formidable challenge. In this study, we report the rejuvenating effects of HEP14, a natural activator of protein kinase C (PKC) pathway, on aged ovarian function by inducing mitophagy and effectively clearing reactive oxygen species. To ensure controlled and sustained delivery of HEP14 in vivo, we develop HEP14-loaded PLGA microspheres.

View Article and Find Full Text PDF