Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Variant transthyretin-mediated amyloidosis (ATTR-v) is a well-characterized disease affecting the neurologic and cardiovascular systems. Patisiran has been approved for neurologic involvement as it reduces hepatic synthesis of transthyretin (TTR). Eye involvement is a lateonset feature increasing the risk of glaucoma and cataracts in patients.

Aims: The aim of this case series was to assess whether patisiran can effectively reduce TTR synthesis in such a barrier-protected organ as the eye.

Methods: Two patisiran-treated ATTR-v patients underwent serum and aqueous humor sampling to measure TTR levels detected by SDS-PAGE and immunoblotting. Serum samples were compared to healthy control (HC), whereas aqueous humor samples were compared to non-amyloidotic subjects affected by cataracts and glaucoma.

Results: Serum TTR levels representative of hepatic synthesis were sharply lower in treated patients if compared to the HC (-87.5% and -93.75%, respectively). Aqueous humor TTR levels showed mild-tono reduction in treated patients compared to non-amyloidotic subjects with cataracts (-34.9% and +8.1%, respectively) and glaucoma (-41.1% and -2.1%).

Conclusion: Patisiran does not seem to be as effective in inhibiting ocular TTR synthesis as it is in inhibiting hepatic synthesis. Re-engineering the envelope could allow the drug to target RPE cells thus avoiding any ocular involvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616919PMC
http://dx.doi.org/10.2174/1570159X21666230623094710DOI Listing

Publication Analysis

Top Keywords

hepatic synthesis
12
aqueous humor
12
ttr levels
12
ttr synthesis
8
samples compared
8
compared non-amyloidotic
8
non-amyloidotic subjects
8
subjects cataracts
8
treated patients
8
patients compared
8

Similar Publications

Species-specific gene expression manipulation in humanized livers of chimeric mice via siRNA-encapsulated lipid nanoparticle treatment.

Mol Ther Methods Clin Dev

June 2025

Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.

Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF

Organ transplantation faces critical challenges, including donor shortages, suboptimal preservation, ischemia-reperfusion injury (IRI), and immune rejection. Nanotechnology offers transformative solutions by leveraging precision-engineered materials to enhance graft viability and outcomes. This review highlights nanomaterials' roles in revolutionizing organ preservation.

View Article and Find Full Text PDF

Introduction: Cirrhosis progresses from compensated to decompensated phases, often marked by portal hypertension and complications like ascites, variceal hemorrhage, and hepatic encephalopathy. The ammonia-to-urea (A-to-U) ratio, reflecting urea cycle efficiency, may offer superior diagnostic performance compared to plasma ammonia levels alone. This study compared the diagnostic accuracy of the A-to-U ratio and plasma ammonia levels for identifying portal hypertension.

View Article and Find Full Text PDF

Genetic variants of various cytochrome P450 (CYP) enzymes significantly impact pharmacokinetics. The highly polymorphic hepatic CYP2C9 metabolizes ~ 15% of clinically used drugs. This study aimed to characterize the ligand-binding properties of the understudied CYP2C9.

View Article and Find Full Text PDF