Extracellular signal-regulated kinase 1/2 (ERK1/2) is involved in the regulation of the key cellular processes that are essential for the proper functioning of the cell under physiological conditions. Notably, the hyperactivation of ERK1/2 is implicated in oncogenesis and metastatic dissemination across various tumor types, making it an attractive candidate for targeted therapy (TT) through functional inhibition. In intrahepatic cholangiocarcinoma (iCCA), sustained ERK1/2 activation represents one of the major events within the complex signaling network that drives tumor development and progression.
View Article and Find Full Text PDFPigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, Thrombospondin 1 (THBS1), and Thrombospondin 2 (THBS2) are expressed and released into the tumor microenvironment (TME), where they promote lymphangiogenesis at the expense of the neoangiogenic program, aiding the dissemination of cancer cells via lymphatic vessels.
View Article and Find Full Text PDFThe immunization of mice with the sterile culture medium supernatants of (Mtb) H37Rv permitted the production of several monoclonal antibodies (mAbs) specific for secreted and/or released antigens. Two mAbs bound and immunoprecipitated an 80-kDa protein that was identified by mass spectrometry as Rv1133c, the methionine synthase MetE. The protein MetE is ubiquitous among prokaryota and shows a significant sequence homology in many bacteria.
View Article and Find Full Text PDFIntrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied.
View Article and Find Full Text PDFIn intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes.
View Article and Find Full Text PDFCurr Neuropharmacol
November 2023
Background: Variant transthyretin-mediated amyloidosis (ATTR-v) is a well-characterized disease affecting the neurologic and cardiovascular systems. Patisiran has been approved for neurologic involvement as it reduces hepatic synthesis of transthyretin (TTR). Eye involvement is a lateonset feature increasing the risk of glaucoma and cataracts in patients.
View Article and Find Full Text PDFColistin represents a last-line treatment option for infections caused by multidrug resistant Gram-negative pathogens, including . Colistin resistance generally involves the modification of the lipid A moiety of lipopolysaccharide (LPS) with positively charged molecules, namely phosphoethanolamine (PEtN) or 4-amino-4-deoxy-L-arabinose (Ara4N), that reduce colistin affinity for its target. Several lines of evidence highlighted lipid A aminoarabinosylation as the primary colistin resistance mechanism in , while the contribution of phosphoethanolamination remains elusive.
View Article and Find Full Text PDFBackground And Aims: Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells.
View Article and Find Full Text PDFBackground & Aims: The microenvironment of intrahepatic cholangiocarcinoma (iCCA) is hypovascularized, with an extensive lymphatic network. This leads to rapid cancer spread into regional lymph nodes and the liver parenchyma, precluding curative treatments. Herein, we investigated which factors released in the iCCA stroma drive the inhibition of angiogenesis and promote lymphangiogenesis.
View Article and Find Full Text PDFAdenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression.
View Article and Find Full Text PDFJ Antimicrob Chemother
September 2020
Background: Colistin is a last-resort treatment option for many MDR Gram-negative bacteria. The covalent addition of l-aminoarabinose to the lipid A moiety of LPS is the main colistin resistance mechanism in the human pathogen Pseudomonas aeruginosa.
Objectives: Identification (by in silico screening of a chemical library) of potential inhibitors of ArnT, which catalyses the last committed step of lipid A aminoarabinosylation, and their validation in vitro as colistin adjuvants.
Rheumatoid arthritis (RA) is a chronic autoimmune disease and rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPA) are the most frequently detected autoantibodies (autoAbs). To date, more than 20% of RA cases are still defined as seronegative forms (seronegative RA, SN-RA). The aim of this study was to identify new antigenic targets of autoAbs in RA patients, which can also be recognized in SN-RA.
View Article and Find Full Text PDFInt J Antimicrob Agents
May 2020
Colistin represents the last-line treatment option against many multidrug-resistant Gram-negative pathogens. Several lines of evidence indicate that aminoarabinosylation of the lipid A moiety of lipopolysaccharide (LPS) is an essential step for the development of colistin resistance in Pseudomonas aeruginosa. However, whether it is sufficient to confer resistance in this bacterium remains unclear.
View Article and Find Full Text PDFHere, we developed an unbiased, functional target-discovery platform to identify immunogenic proteins from primary non-small cell lung cancer (NSCLC) cells that had been induced to apoptosis by cisplatin (CDDP) treatment in vitro, as compared with their live counterparts. Among the multitude of proteins identified, some of them were represented as fragmented proteins in apoptotic tumor cells, and acted as non-mutated neoantigens (NM-neoAgs). Indeed, only the fragmented proteins elicited effective multi-specific CD4 and CD8 T cell responses, upon a chemotherapy protocol including CDDP.
View Article and Find Full Text PDFBackground: Intrahepatic cholangiocarcinoma (iCCA) is a malignancy that arises from the intrahepatic biliary tree, showing high mortality rates due to its late clinical presentation and limited treatment options. iCCA is characterized by a dense, reactive desmoplastic stroma marked by a dramatic accumulation of extracellular matrix (ECM). Although recent results strongly suggest a relationship between increasing desmoplastic stroma and the enhanced malignant behaviour of iCCA, the importance of ECM proteins in the pathogenesis of iCCA still have to be addressed.
View Article and Find Full Text PDFLipopolysaccharide (LPS) is an essential structural component of the outer membrane (OM) of most Gram-negative bacteria. In the model organism Escherichia coli, LPS transport to the OM requires seven essential proteins (LptABCDEFG) that form a continuous bridge across the cell envelope. In Pseudomonas aeruginosa the recently-demonstrated essentiality of LptD and LptH, the P.
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is the critical stage of nonalcoholic fatty liver disease (NAFLD). The persistence of necroinflammatory lesions and fibrogenesis in NASH is the leading cause of liver cirrhosis and, ultimately, hepatocellular carcinoma. To date, the histological examination of liver biopsies, albeit invasive, remains the means to distinguish NASH from simple steatosis (NAFL).
View Article and Find Full Text PDFBackground: Changes in iron metabolism frequently accompany HIV-1 infection. However, while many clinical and in vitro studies report iron overload exacerbates the development of infection, many others have found no correlation. Therefore, the multi-faceted role of iron in HIV-1 infection remains enigmatic.
View Article and Find Full Text PDFWe report that 3',5'-cyclic CMP undergoes nonenzymatic di- and trimerization at 20 °C under dry conditions upon proton or UV irradiation. The reaction involves stacking of the cyclic monomers and subsequent polymerization through serial transphosphorylations between the stacked monomers. Proton- and UV-induced oligomerization of 3',5'-cyclic CMP demonstrates that pyrimidines-similar to purines-might also have taken part in the spontaneous generation of RNA under plausible prebiotic conditions as well as in an extraterrestrial context.
View Article and Find Full Text PDFHere, we presented new original data on the effects of iron depletion on the circulating lipid profile in B6HCV mice, a murine model of HCV-related dyslipidemia. Male adult B6HCV mice were subjected to non-invasive iron depletion by low iron diet. Serum iron concentration was assessed for evaluating the effects of the dietary iron depletion.
View Article and Find Full Text PDFLamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA.
View Article and Find Full Text PDFDespite clear evidence that exosomal microRNAs (miRNAs) are able to modulate the cellular microenvironment and that exosomal RNA cargo selection is deregulated in pathological conditions, the mechanisms controlling specific RNA sorting into extracellular vesicles are still poorly understood. Here, we identified the RNA binding protein SYNCRIP (synaptotagmin-binding cytoplasmic RNA-interacting protein; also known as hnRNP-Q or NSAP1) as a component of the hepatocyte exosomal miRNA sorting machinery. SYNCRIP knockdown impairs sorting of miRNAs in exosomes.
View Article and Find Full Text PDFNucleic Acids Res
January 2017
Adenosine deaminases acting on RNA (ADARs) are involved in RNA editing that converts adenosines to inosines in double-stranded RNAs. ADAR1 was demonstrated to be functional on different viruses exerting either antiviral or proviral effects. Concerning HIV-1, several studies showed that ADAR1 favors viral replication.
View Article and Find Full Text PDF