Tracing and trapping micro- and nanoplastics: Untapped mitigation potential of aquatic plants?

Water Res

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China. Electronic address: ya

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Micro- and nanoplastics are emerging concerns due to their environmental ubiquity and currently largely unknown ecological impacts. Leveraging on a recently developed method using europium-doped polystyrene particles (PS-Eu), our present work aimed to accurately trace the uptake and transport of micro- and nanoplastics in aquatic plants and shed insights into the potential of different aquatic plants for trapping and removal of plastics from water environment. Seedlings of Vallisneria denseserrulata Makino (submerged plant), Iris tectorum Maxim (emergent plant), and Eichhornia crassipes Solms (floating plant) were exposed to 100 nm and 2 μm PS-Eu in freshwater (5 μg/mL) or sediments (5 μg/g) for 8 weeks. Fluorescence imaging clearly evidenced that PS-Eu mainly accumulated in the intercellular space and were transported from roots to leaves via the apoplastic path and vascular bundle. Mass spectrum analysis demonstrated that up to 6250 μg/g nanoplastics were trapped in aquatic plants (mainly in roots) with a bioconcentration factor of 306.5, depending on exposure routes and plant species. Owing to their excellent capture capability and high tolerance to plastic exposures, floating plants like E. crassipes are promising for immobilizing and removing fine plastics from the water environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120249DOI Listing

Publication Analysis

Top Keywords

micro- nanoplastics
12
aquatic plants
12
potential aquatic
8
plastics water
8
water environment
8
tracing trapping
4
trapping micro-
4
nanoplastics
4
nanoplastics untapped
4
untapped mitigation
4

Similar Publications

Several micro- and nanoplastic particle (MNP) traits, like polymer type, size, and shape, have been shown to influence MNP toxicity. However, the direction and strength of these moderating effects are often unclear, and generalizations from single studies are challenging to establish. Meta-analyses increase generalizability and derive more accurate and precise effect size estimates by combining measurements from published studies.

View Article and Find Full Text PDF

Detection of micro- and nanoplastic particles at extremely low concentrations in complex matrices is a critical goal in environmental science and regulatory frameworks. Surface-enhanced Raman spectroscopy (SERS) offers unique advantages for detecting molecular species in such mixtures, relying solely on their characteristic fingerprints. However, its application for plastic particles has been constrained due to weak analyte-substrate interactions.

View Article and Find Full Text PDF

Cell-scale dynamic modeling of membrane interactions with arbitrarily shaped particles.

Soft Matter

September 2025

Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA.

Modeling membrane interactions with arbitrarily shaped colloidal particles, such as environmental micro- and nanoplastics, at the cell scale remains particularly challenging, owing to the complexity of particle geometries and the need to resolve fully coupled translational and rotational dynamics. Here, we present a force-based computational framework capable of capturing dynamic interactions between deformable lipid vesicles and rigid particles of irregular shapes. Both vesicle and particle surfaces are represented using triangulated meshes, and Langevin dynamics resolves membrane deformation alongside rigid-body particle motion.

View Article and Find Full Text PDF

Evaluating the Relationship Between Microplastics and Nanoplastics Contamination and Diverse Cancer Types Development.

Environ Pollut

September 2025

Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; Biomaterials Research Laboratory, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland. Electronic address:

Microplastics are defined as plastic particles no larger than 5 mm, while nanoplastics are even smaller particles with dimensions less than 1000 nm. With mounting evidence of their widespread presence in human tissues and diverse ecosystems, these micro- and nanoplastics (MNPs) have collectively emerged as ubiquitous environmental contaminants. They can enter the human body through ingestion, inhalation, or dermal absorption.

View Article and Find Full Text PDF

Polyethylene: an identified component of human dental calculus triggers cytotoxicity and inflammatory responses in gingival fibroblasts.

Environ Int

August 2025

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China. Electronic address:

The oral cavity, the gateway to the digestive system, represents a critical entrance for micro- and nanoplastics (MNPs) to enter the human body. Few studies have assessed the long-term accumulation of MNPs in the oral cavity and their potential harm to resident cells. This study investigated the presence of MNPs in human dental calculus and evaluated the cytotoxic and inflammatory effects of polyethylene (PE) on human gingival fibroblasts (HGFs).

View Article and Find Full Text PDF