A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metallurgical manipulation of surface Volta potential in bimetals and cell response of human mesenchymal stem cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bioelectricity plays an overriding role in directing cell migration, proliferation, differentiation etc. Tailoring the electro-extracellular environment through metallurgical manipulation could modulate the surrounding cell behaviors. In this study, different electric potential patterns, in terms of Volta potential distribution and gradient, were created on the metallic surface as an electric microenvironment, and their effects on adherent human mesenchymal stem cells were investigated. Periodically and randomly distributed Volta potential pattern, respectively, were generated on the surface through spark plasma sintering of two alternatively stacked dissimilar metals films and of a mixture of metallic powders. Actin cytoskeleton staining demonstrated that the Volta potential pattern strongly affected cell attachment and deformation. The cytoskeletons of cells were observed to elongate along the Volta potential gradient and across the border of adjacent regions with higher and lower potentials. Moreover, the steepest potential gradient resulting from the drastic compositional changes on the periodic borders gave rise to the strongest osteogenic tendency among all the samples. This study suggests that tailoring the Volta potential distribution and gradient of metallic biomaterials via metallurgical manipulation is a promising approach to activate surrounding cells, providing an extra degree of freedom for designing desirable bone-repairing metallic implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2023.213529DOI Listing

Publication Analysis

Top Keywords

volta potential
24
metallurgical manipulation
12
potential
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
potential distribution
8
distribution gradient
8
potential pattern
8
potential gradient
8

Similar Publications