98%
921
2 minutes
20
Objective: From patient and phantom studies, we aimed to highlight an original implementation process and share a two-years experience clinical feedback on xSPECT (xS), xSPECT Bone (xB) and Broadquant quantification (Siemens) for Tc-bone and Lu-NET (neuroendocrine tumors) imaging.
Methods: Firstly, we checked the relevance of implemented protocols and Broadquant module on the basis of literature and with a homogeneous phantom study respectively. Then, we described xS and xB behaviours with reconstruction parameters (10i-0mm to 40i-20mm) and optimized the protocols through a blinded survey (7 physicians). Finally, the preferred Tc-bone reconstruction was assessed through an IEC NEMA phantom including liquid bone spheres. Conventional SNR, CNR, spatial resolution, Q.%error, and recovery curves; and innovative NPS, TTF and detectability score d' were performed (ImQuest software). We also sought to review the adoption of these tools in clinical routine and showed the potential of quantitative xB in the context of theranostics (Xofigo®).
Results: We showed the need of optimization of implemented reconstruction algorithms and pointed out a decay correction particularity with Broadquant. Preferred parameters were 1s-25i-8mm and 1s-25i-5mm for xS/xB-bone and xS-NET imaging respectively. The phantom study highlighted the different image quality especially for the enhanced spatial resolution xB algorithm (1/TTF=2.1 mm) and showed F3D and xB shared the best performances in terms of image quality and quantification. xS was generally less efficient.
Conclusions: Qualitative F3D still remains the clinical standard, xB and Broadquant offer challenging perspectives in theranostics. We introduced the potential of innovative metrics for image quality analysis and showed how CT tools should be adapted to fit nuclear medicine imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2023.102611 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
Purpose: In children with Langerhans Cell Histiocytosis (LCH), FDG-PET/CT is used for staging and response assessment. Whole-body MRI (WB-MRI) can serve as an ionizing radiation-free alternative for repeated whole-body imaging. The aim of this study was to compare WB-MRI with FDG-PET/CT for staging and response assessment in pediatric LCH.
View Article and Find Full Text PDFMenopause
September 2025
Department of Speech Language Pathology and Audiology, Northeastern University, Boston, MA.
Importance And Objective: Voice changes during menopause affect patients' communication and quality of life. This narrative review aims to provide a comprehensive exploration of voice changes during menopause. It presents objective and subjective/symptomatic changes as well as treatment options for this population.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.
Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.
Eur J Ophthalmol
September 2025
vEyes NPO, vEyes Lab, Milo, Italy.
PurposeTo introduce, describe and validate a novel, 3D-printed portable slit lamp system integrated with a macro lens-equipped smartphone, providing clinicians with a quick, easy, and effective method for obtaining high-quality clinical images.Materials and MethodsA 3D-printed portable slit lamp was developed, comprising a warm white LED light pen housed in a custom case with a biconvex lens focusing light through a 0.4 mm slit.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Korea.
Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.
View Article and Find Full Text PDF