98%
921
2 minutes
20
The microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here, we apply weak in-plane magnetic fields to a capacitively shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure-dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.130.220602 | DOI Listing |
Phys Rev Lett
August 2025
SISSA-International School for Advanced Studies, Via Bonomea 265, I-34136 Trieste, Italy.
We present the first constraints on primordial magnetic fields from the Lyman-α forest using full cosmological hydrodynamic simulations. At the scales and redshifts probed by the data, the flux power spectrum is extremely sensitive to the extra power induced by primordial magnetic fields in the linear matter power spectrum, at a scale that we parametrize with k_{peak}. We rely on a set of more than a quarter million flux models obtained by varying thermal and reionization histories and cosmological parameters.
View Article and Find Full Text PDFNano Lett
September 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
Planar Josephson junctions (JJs) based on InSb nanoflags have recently emerged as an intriguing platform in superconducting electronics. The knowledge of the current-phase relationship (CPR) of such hybrid junctions is crucial for their applications. This letter presents the fabrication and investigation of superconducting quantum interference devices (SQUIDs) employing InSb nanoflag JJs.
View Article and Find Full Text PDFSci Total Environ
September 2025
Faculty of Civil and Environmental Engineering, Technion, Israel. Electronic address:
The marine surface microlayer (SML) is distinct from the subsurface water by physical, chemical and biological properties. Being the interface, the SML regulates mass and energy transfer between the ocean and the overlying atmosphere. Given the wide surface area covered by oceans, even small change in flux may have a significant global impact.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States.
Raman spectroscopy is a powerful method for analyzing chemical compositions across diverse samples. Spontaneous Raman scattering (spRS) provides complete Raman spectra but typically yields low signal levels, requiring long signal integration times. In contrast, stimulated Raman scattering (SRS) produces much stronger signals, allowing for rapid spectral acquisition, and has been widely used to accelerate chemical imaging.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Photovoltaic Technologies Laboratory, Department of Physics, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (Vilnius Tech), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
The transport properties of biased type II superconductors are strongly influenced by external magnetic fields, which play a crucial role in optimizing the stability and performance of low-noise superconducting electronic devices. A major challenge is the stochastic behavior of Abrikosov vortices, which emerge in the mixed state and lead to energy dissipation through their nucleation, motion, and annihilation. Uncontrolled vortex dynamics can introduce electronic noise in low-power systems and trigger thermal breakdown in high-power applications.
View Article and Find Full Text PDF