98%
921
2 minutes
20
Cells of the developing human brain are affected by the progressive acquisition of genetic and epigenetic alterations that have been reported to contribute to somatic mosaicism in the adult brain and are increasingly considered a possible cause of neurogenetic disorders. A recent work uncovered that the copy-paste transposable element (TE) LINE-1 (L1) is mobilized during brain development, and thus mobile non-autonomous TEs like AluY and SINE-VNTR-Alu (SVA) families can use L1 activity in trans, leading to insertions that may influence the variability of neural cells at genetic and epigenetic levels. In contrast to SNPs and when considering substitutional sequence evolution, the presence or absence of TEs at orthologous loci represents highly informative clade markers that provide insights into the lineage relationships between neural cells and how the nervous system evolves in health and disease. SVAs, as the 'youngest' class of hominoid-specific retrotransposons preferentially found in gene- and GC-rich regions, are thought to differentially co-regulate nearby genes and exhibit a high mobility in the human germline. Therefore, we determined whether this is reflected in the somatic brain and used a subtractive and kinetic enrichment technique called representational difference analysis (RDA) coupled with deep sequencing to compare different brain regions with respect to SINE-VNTR-Alu insertion patterns. As a result, we detected somatic SVA integrations in all human brain regions analyzed, and the majority of insertions can be attributed to lineages of telencephalon and metencephalon, since most of the examined integrations are unique to different brain regions under scrutiny. The SVA positions were used as presence/absence markers, forming informative sites that allowed us to create a maximum parsimony phylogeny of brain regions. Our results largely recapitulated the generally accepted evo-devo patterns and revealed chromosome-wide rates of SVA reintegration targets and preferences for specific genomic regions, e.g., GC- and TE-rich regions as well as close proximity to genes that tend to fall into neural-specific Gene Ontology pathways. We concluded that SVA insertions occur in the germline and somatic brain cells at similar target regions, suggesting that similar retrotransposition modes are effective in the germline and soma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267396 | PMC |
http://dx.doi.org/10.3389/fcell.2023.1201258 | DOI Listing |
J Assist Reprod Genet
September 2025
Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
Purpose: To determine if melatonin-enriched culture media could offset loss of imprinting in mouse concepti.
Methods: Zygotes were cultured to blastocyst stage under optimized conditions in melatonin-supplemented media at either 10 M (MT 10) or 10 M (MT 10), or without supplementation (Culture + embryo transfer, or ET, positive control). Blastocysts were also developed in vivo (ET negative control).
Mol Psychiatry
September 2025
Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., Warsaw, 02-093, Poland.
Alcohol use disorder (AUD) is characterized by pathological motivation to consume alcohol and cognitive inflexibility, leading to excessive alcohol seeking and use. In this study, we investigated the molecular correlates of impaired extinction of alcohol seeking during forced abstinence using a mouse model of AUD in the automated IntelliCage social system. This model distinguished AUD-prone and AUD-resistant animals based on the presence of ≥2 or <2 criteria of AUD, respectively.
View Article and Find Full Text PDFNat Commun
September 2025
Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
Interval timing, the ability to perceive and estimate durations between events, is essential for many animal behaviors. In mammals, it is linked to specific cortical and sub-cortical brain regions, but its neural basis in birds remains unclear. We trained two male carrion crows on a time estimation task using visual stimuli, cueing them to wait for a minimum duration of 1500 ms, 3000 ms, or 6000 ms before responding to receive a reward.
View Article and Find Full Text PDFeNeuro
September 2025
Department of Neurobiology and McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL35294 and.
The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.
View Article and Find Full Text PDFJ Neurosci
September 2025
Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
Human speech perception is multisensory, integrating auditory information from the talker's voice with visual information from the talker's face. BOLD fMRI studies have implicated the superior temporal gyrus (STG) in processing auditory speech and the superior temporal sulcus (STS) in integrating auditory and visual speech, but as an indirect hemodynamic measure, fMRI is limited in its ability to track the rapid neural computations underlying speech perception. Using stereoelectroencephalograpy (sEEG) electrodes, we directly recorded from the STG and STS in 42 epilepsy patients (25 F, 17 M).
View Article and Find Full Text PDF