A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Carboxymethyl chitosan/sodium alginate hydrogel films with good biocompatibility and reproducibility by in situ ultra-fast crosslinking for efficient preservation of strawberry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strawberry is a seasonal and regional fruit. Thus, strawberry waste caused by spoilage and decay is an urgent problem that must be solved. Developing hydrogel films (HGF) for multifunctional food packaging can effectively slow down strawberry. Based on the carboxymethyl chitosan/sodium alginate/citric acid with excellent biocompatibility, preservation effect, and ultrafast (10 s) coating on the strawberry surface, HGF specimens were designed and prepared through the electrostatic interaction of opposite charges between polysaccharides. The prepared HGF specimen exhibited excellent low moisture permeability and antibacterial properties. Its lethality rates against both Escherichia coli and Staphylococcus aureus were more than >99 %. The HGF could keep strawberries fresh for up to 8, 19, and 48 days at 25.0, 5.0, and 0 °C, respectively, by delaying the fruits' ripening, dehydration, microbial invasion, and respiration rate. The HGF dissolved and regenerated five times still exhibited good performance. The water vapor transmission rate of the regenerative HGF could reach 98 % of that of the original HGF. The regenerative HGF could maintain the freshness of strawberries for up to 8 days at 25.0 °C. This study provides new insight into an alternative film design for convenient, green, and renewable alternative films to delay perishable fruit spoilage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121073DOI Listing

Publication Analysis

Top Keywords

carboxymethyl chitosan/sodium
8
hydrogel films
8
hgf
8
regenerative hgf
8
strawberry
5
chitosan/sodium alginate
4
alginate hydrogel
4
films good
4
good biocompatibility
4
biocompatibility reproducibility
4

Similar Publications