Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Trained immunity is a long-term increase in responsiveness of innate immune cells, induced by certain infections and vaccines. During the last 3 years of the COVID-19 pandemic, vaccines that induce trained immunity, such as BCG, MMR, OPV, and others, have been investigated for their capacity to protect against COVID-19. Further, trained immunity-inducing vaccines have been shown to improve B and T cell responsiveness to both mRNA- and adenovirus-based anti-COVID-19 vaccines. Moreover, SARS-CoV-2 infection itself induces inappropriately strong programs of trained immunity in some individuals, which may contribute to the long-term inflammatory sequelae. In this review, we detail these and other aspects of the role of trained immunity in SARS-CoV-2 infection and COVID-19. We also examine the learnings from the trained immunity studies conducted in the context of this pandemic and discuss how they may help us in preparing for future infectious outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265767PMC
http://dx.doi.org/10.1016/j.chom.2023.05.004DOI Listing

Publication Analysis

Top Keywords

trained immunity
24
role trained
8
sars-cov-2 infection
8
immunity
6
trained
6
covid-19
4
immunity covid-19
4
covid-19 lessons
4
lessons pandemic
4
pandemic trained
4

Similar Publications

Hematopoietic stem and progenitor cells as a reservoir for trained immunity.

Elife

September 2025

Department of Pediatrics, Division of Infectious Diseases, and Stem Cells and Regenerative Medicine Center, Baylor College of Medicine and Texas Children's Hospital, Houston, United States.

Human and murine studies reveal that innate immune cells are able to mount enhanced responses to pathogens after primary inflammatory exposure. Innate immune memory has been shown to last for months to years, longer than the lifespan of most innate immune cells. Indeed, long-lived hematopoietic stem and progenitor cells (HSPCs) serve as a cellular reservoir for innate immune memory.

View Article and Find Full Text PDF

Kidney transplant recipients face a high risk of acute rejection (AR), where the immune system attacks the transplanted organ. Current diagnostics rely on invasive biopsies with procedural risks, costs, and limited temporal resolution. While urinary chemokines CXCL9 and CXCL10 are promising non-invasive AR biomarkers, clinical adoption is limited by labor-intensive detection and lack of point-of-care (POC) solutions.

View Article and Find Full Text PDF

Microneedle-Delivered Multivalent MPXV DNA Vaccines Induce Promising Immunity Profiles and Cross-Protection in Mice.

Immunology

September 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.

Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery.

View Article and Find Full Text PDF