98%
921
2 minutes
20
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state. GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312318 | PMC |
http://dx.doi.org/10.1152/jn.00068.2022 | DOI Listing |
J Neurophysiol
July 2023
Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States.
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions.
View Article and Find Full Text PDFMov Disord
May 2023
Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.
Background: The landscape of neurophysiological symptoms and behavioral biomarkers in basal ganglia signals for movement disorders is expanding. The clinical translation of sensing-based deep brain stimulation (DBS) also requires a thorough understanding of the anatomical organization of spectral biomarkers within the subthalamic nucleus (STN).
Objectives: The aims were to systematically investigate the spectral topography, including a wide range of sub-bands in STN local field potentials (LFP) of Parkinson's disease (PD) patients, and to evaluate its predictive performance for clinical response to DBS.
Front Neuroinform
April 2022
Department of Electronics and Information, Korea University, Sejong, South Korea.
Electroencephalography (EEG)-based diagnosis of psychiatric diseases using machine-learning approaches has made possible the objective diagnosis of various psychiatric diseases. The objective of this study was to improve the performance of a resting-state EEG-based computer-aided diagnosis (CAD) system to diagnose post-traumatic stress disorder (PTSD), by optimizing the frequency bands used to extract EEG features. We used eyes-closed resting-state EEG data recorded from 77 PTSD patients and 58 healthy controls (HC).
View Article and Find Full Text PDFBrain Neurosci Adv
October 2021
School of Psychology, University of Surrey, Guildford, UK.
The study assessed a mobile electroencephalography system with water-based electrodes for its applicability in cognitive and behavioural neuroscience. It was compared to a standard gel-based wired system. Electroencephalography was recorded on two occasions (first with gel-based, then water-based system) as participants completed the flanker task.
View Article and Find Full Text PDFBrain Res
November 2020
Department of Psychiatry, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea; Mind-Neuromodulation Laboratory, College of Medicine, Hallym University, Chuncheon, Republic of Korea. Electronic address:
Objective: Despite the clinical effectiveness of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), the comparability of these interventions in neurophysiological aspects have not been thoroughly investigated. Thus, we aimed to directly compare the electrophysiological effects of single-session tDCS and gamma-tACS in healthy subjects, matching the intervention protocol as closely as possible.
Methods: This was a randomized, double-blinded, and active-controlled study.