Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The speed of sound in helium was measured along five isotherms in a temperature range from 273 to 373 K at pressures from 15 to 100 MPa with a relative expanded uncertainty ( = 2) from 0.02 to 0.04%. A dual-path pulse-echo system was utilized to conduct these measurements. The data were compared with the reference equation of state developed by Ortiz Vega et al. At pressures up to 50 MPa, relative deviations were within the uncertainty of our measurements, while, at higher pressures, increasing negative deviations were observed up to -0.26%. We also compared the results with predictions based on the virial equation of state correct to the seventh virial coefficient, using the virial coefficients reported recently by Gokul et al., finding agreement to within the experimental uncertainty at all investigated states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10259260PMC
http://dx.doi.org/10.1021/acs.jced.3c00083DOI Listing

Publication Analysis

Top Keywords

speed sound
8
pressures 100
8
100 mpa
8
273 373
8
mpa relative
8
equation state
8
sound measurements
4
measurements helium
4
pressures
4
helium pressures
4

Similar Publications

This study establishes a quantitative framework using field observations and normal mode theory to reveal wind field control mechanisms over ambient noise vertical directionality in shallow water. Acoustic data from a vertical line array in the northern South China Sea, combined with sound speed profiles, seabed properties, and multi-source wind fields (ERA5 reanalysis/Weibull-distributed synthetics), demonstrate: (1) A 20-km spatial noise-energy threshold (>90% energy contribution), challenging conventional near-field assumptions (1-2 km); (2) frequency-dependent distribution: low-frequency (50-200 Hz) directionality depends on near-field sources, while high-frequency (>400 Hz) energy shifts seaward due to modal cutoff variations; (3) model validation shows 0.96 correlation at 100 Hz/100 km (stratified medium accuracy), but seabed interface waves induce 3.

View Article and Find Full Text PDF

Current applications of mass-spectrometry-based proteomics range from single-cell to body fluid analysis, each presenting very different demands regarding sensitivity or sample throughput. Additionally, the vast molecular complexity of proteomes and the massive dynamic range of protein concentrations in these biological systems require highly performant chromatographic separations in tandem with the high speed and sensitivity afforded by modern mass spectrometers. In this study, we focused on the chromatographic aspect and, more specifically, systematically evaluated proteome analysis performance across a wide range of chromatographic flow rates (0.

View Article and Find Full Text PDF

Surficial sediments are highly susceptible to physical, biological, and chemical processes, which can create significant heterogeneity, affecting the transmission and scattering of elastic waves. Non-invasive medical shear wave elastography (SWE) can potentially resolve shear speed heterogeneity in this delicate surficial layer. Samples were extracted from two mudflats in New Hampshire, USA, where sound speed and attenuation were measured 1 cm below the water-sediment interface using the core and resonance logger (200 kHz-1 MHz).

View Article and Find Full Text PDF

Bidirectional optimization of firing rate in a mouse neuronal brain-machine interface.

Biol Lett

September 2025

State Key Laboratory of Digital Medical Engineering Sanya Research Institute of Hainan University, Hainan University, Haikou, Hainan, China.

Neuroplasticity enables the brain to adapt neural activity, but whether this can be harnessed for abstract optimization tasks like seeking curve extrema remains unclear. Here, we used a brain-machine interface in mice, pairing auditory feedback of neuronal firing rate with water rewards, to investigate whether motor cortex neurons can optimize activity along a unimodal curve ([Formula: see text]). The curve maps firing rate ([Formula: see text]) to sound frequency increase speed ([Formula: see text]), where the curve extremum accelerates reward acquisition.

View Article and Find Full Text PDF

Sensorineural hearing loss is the most common form of deafness, typically resulting from the loss of sensory cells on the basilar membrane, which cannot regenerate and thus lose sensitivity to sound vibrations. Here, we report a reconfigurable piezo-ionotropic polymer membrane engineered for biomimetic sustainable multi-resonance acoustic sensing, offering exceptional sensitivity (530 kPa) and broadband frequency discrimination (20 Hz to 3300 Hz) while remaining resistant to "dying". The acoustic sensing capability is driven by an ion hitching-in cage effect intrinsic to the ion gel combined with fluorinated polyurethane.

View Article and Find Full Text PDF