A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Lupus nephritis or not? A simple and clinically friendly machine learning pipeline to help diagnosis of lupus nephritis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Diagnosis of lupus nephritis (LN) is a complex process, which usually requires renal biopsy. We aim to establish a machine learning pipeline to help diagnosis of LN.

Methods: A cohort of 681 systemic lupus erythematosus (SLE) patients without LN and 786 SLE patients with LN was established, and a total of 95 clinical, laboratory data and 17 meteorological indicators were collected. After tenfold cross-validation, the patients were divided into training set and test set. The features selected by collective feature selection method of mutual information (MI) and multisurf were used to construct the models of logistic regression, decision tree, random forest, naive Bayes, support vector machine (SVM), light gradient boosting (LGB), extreme gradient boosting (XGB), and artificial neural network (ANN), the models were compared and verified in post-analysis.

Results: Collective feature selection method screens out antistreptolysin (ASO), retinol binding protein (RBP), lupus anticoagulant 1 (LA1), LA2, proteinuria and other features, and the hyperparameter optimized XGB (ROC: AUC = 0.995; PRC: AUC = 1.000, APS = 1.000; balance accuracy: 0.990) has the best performance, followed by LGB (ROC: AUC = 0.992; PRC: AUC = 0.997, APS = 0.977; balance accuracy: 0.957). The worst performance is naive Bayes model (ROC: AUC = 0.799; PRC: AUC = 0.822, APS = 0.823; balance accuracy: 0.693). In the composite feature importance bar plots, ASO, RF, Up/Ucr, and other features play important roles in LN.

Conclusion: We developed and validated a new and simple machine learning pathway for diagnosis of LN, especially the XGB model based on ASO, LA1, LA2, proteinuria, and other features screened out by collective feature selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257380PMC
http://dx.doi.org/10.1007/s00011-023-01755-7DOI Listing

Publication Analysis

Top Keywords

lupus nephritis
12
machine learning
12
collective feature
12
feature selection
12
balance accuracy
12
learning pipeline
8
pipeline help
8
help diagnosis
8
diagnosis lupus
8
sle patients
8

Similar Publications