98%
921
2 minutes
20
We present a novel sensing approach for ambient ozone detection based on deep-ultraviolet (DUV) cavity-enhanced absorption spectroscopy (CEAS) using a laser driven light source (LDLS). The LDLS has broadband spectral output which, with filtering, provides illumination between ~230-280 nm. The lamp light is coupled to an optical cavity formed from a pair of high-reflectivity (R~0.99) mirrors to yield an effective path length of ~58 m. The CEAS signal is detected with a UV spectrometer at the cavity output and spectra are fitted to yield the ozone concentration. We find a good sensor accuracy of <~2% error and sensor precision of ~0.3 ppb (for measurement times of ~5 s). The small-volume (<~0.1 L) optical cavity is amenable to a fast response with a sensor (10-90%) response time of ~0.5 s. Demonstrative sampling of outdoor air is also shown with favorable agreement against a reference analyzer. The DUV-CEAS sensor compares favorably against other ozone detection instruments and may be particularly useful for ground-level sampling including that from mobile platforms. The sensor development work presented here can also inform of the possibilities of DUV-CEAS with LDLSs for the detection of other ambient species including volatile organic compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255287 | PMC |
http://dx.doi.org/10.3390/s23114989 | DOI Listing |
Environ Int
August 2025
Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:
Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.
View Article and Find Full Text PDFEnviron Res
August 2025
School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, 213001, PR China.
MnOx-based materials have attracted significant attention for ozone decomposition due to their excellent catalytic activity. However, improving their stability and water resistance under humid conditions remains a major challenge. In this work, a K-doped ε-MnO catalyst was synthesized in situ using ozone as an oxidant.
View Article and Find Full Text PDFSci Rep
August 2025
Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland.
The oral microbiome has a crucial role in nitric oxide (NO) production and contributes to oral and systemic health. This study compared oral microbiome composition and markers of NO production between highlytrained competitive athletes and inactive controls. Competitive athletes and untrained controls (N = 10 per group) were recruited.
View Article and Find Full Text PDFAntibiotics (Basel)
August 2025
Department of Surgery, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.
The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from medical facilities. In this study, a continuous-flow wastewater treatment system using ozone and ultraviolet light, which has excellent inactivation effects, was implemented in a hospital in an urban area of Japan.
View Article and Find Full Text PDFIn this study, phenol removal by ozonation under strong alkaline conditions in a continuously operated jet loop reactor (JLR) is investigated. The effects of inlet ozone gas concentration, hydraulic retention time (HRT), and influent phenol concentration on phenol, chemical oxygen demand (COD), and total organic carbon (TOC) removal in the JLR effluent are evaluated. When the inlet ozone gas concentration is 17.
View Article and Find Full Text PDF