A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Achievement of High Perpendicular Anisotropy and Modification of Heat Treatment Peeling in Micron-Thickness Nd-Fe-B Films Used for Magnetic MEMS. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thick Nd-Fe-B permanent magnetic films with good perpendicular anisotropy have important applications in magnetic microelectromechanical systems (MEMSs). However, when the thickness of the Nd-Fe-B film reaches the micron level, the magnetic anisotropy and texture of NdFeB film will become worse, and it is also prone to peeling during heat treatment, which seriously limits their applications. In this paper, Si(100)/Ta(100 nm)/NdFeB(x = 14.5, 16.4, 18.2)/Ta (100 nm) films with thicknesses of 2-10 μm are prepared by magnetron sputtering. It is found that gradient annealing (GN) could help improve the magnetic anisotropy and texture of the micron-thickness film. When the Nd-Fe-B film thickness increases from 2 μm to 9 μm, its magnetic anisotropy and texture do not deteriorate. For the 9 μm Nd-Fe-B film, a high coercivity of 20.26 kOe and high magnetic anisotropy (remanence ratio M/M = 0.91) are achieved. An in-depth analysis of the elemental composition of the film along the thickness direction is conducted, and the presence of Nd aggregation layers at the interface between the Nd-Fe-B and the Ta layers is confirmed. The influence of thicknesses of the Ta buffer layer on the peeling of Nd-Fe-B micron-thickness films after high-temperature annealing is investigated, and it is found that increasing the thickness of the Ta buffer layer could effectively inhibit the peeling of Nd-Fe-B films. Our finding provides an effective way to modify the heat treatment peeling of Nd-Fe-B films. Our results are important for the development of Nd-Fe-B micron-scale films with high perpendicular anisotropy for applications in magnetic MEMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10254347PMC
http://dx.doi.org/10.3390/ma16114071DOI Listing

Publication Analysis

Top Keywords

magnetic anisotropy
16
perpendicular anisotropy
12
heat treatment
12
nd-fe-b films
12
nd-fe-b film
12
anisotropy texture
12
peeling nd-fe-b
12
nd-fe-b
10
high perpendicular
8
treatment peeling
8

Similar Publications