98%
921
2 minutes
20
Synthesis prediction is a key accelerator for the rapid design of advanced materials. However, determining synthesis variables such as the choice of precursor materials is challenging for inorganic materials because the sequence of reactions during heating is not well understood. In this work, we use a knowledge base of 29,900 solid-state synthesis recipes, text-mined from the scientific literature, to automatically learn which precursors to recommend for the synthesis of a novel target material. The data-driven approach learns chemical similarity of materials and refers the synthesis of a new target to precedent synthesis procedures of similar materials, mimicking human synthesis design. When proposing five precursor sets for each of 2654 unseen test target materials, the recommendation strategy achieves a success rate of at least 82%. Our approach captures decades of heuristic synthesis data in a mathematical form, making it accessible for use in recommendation engines and autonomous laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256153 | PMC |
http://dx.doi.org/10.1126/sciadv.adg8180 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFOrg Lett
September 2025
United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
A direct azidomethylation reaction at the sulfur atoms of thiols with -azidomethyldisulfonimides is presented, providing a facile and efficient approach for the synthesis of azidomethylated compounds with broad substrate scope and mild reaction conditions. Under optimized conditions using -azidomethyl-bis(4-trifluoromethylbenzene)sulfonimide as the azidomethyl source, various aliphatic and aromatic thiols furnish the corresponding -azidomethyl compounds in moderate to high yields. The reaction proceeds selectively at the mercapto group, even in substrates bearing polar functional groups.
View Article and Find Full Text PDFMitochondrial DNA A DNA Mapp Seq Anal
September 2025
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
Hibernation is an elaborate response strategy employed by numerous mammals to survive in cold conditions that involves active suppression of metabolism. Despite the role of mitochondria as energy metabolism centers during hibernation, the adaptive and evolutionary mechanisms of mitochondrial genes in hibernating animals, like hedgehogs in eulipotyphlan species, are not yet fully understood. In this study, we sequenced and assembled mitochondrial genomes of the hibernating four-toed hedgehog () and the non-hibernating Asian house shrew ().
View Article and Find Full Text PDFHaematologica
September 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.
Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.
View Article and Find Full Text PDFHaematologica
September 2025
Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Not available.
View Article and Find Full Text PDF