Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Particle-jamming soft robots are characterised by high flexibility in motion and high stiffness when executing a task. Regarding particle jamming of soft robots, the discrete element method (DEM)-finite element method (FEM) coupling was used for modelling and control. At first, a real-time particle-jamming soft actuator was proposed by integrating advantages of the driving Pneu-Net and the driven particle-jamming mechanism. Then, DEM and FEM were separately employed to determine the force-chain structure of the particle-jamming mechanism and the bending deformation performance of the pneumatic actuator. Furthermore, the piecewise constant curvature method was adopted for forward and inverse kinematic modelling of the particle-jamming soft robot. Finally, a prototype of the coupled particle-jamming soft robot was prepared, and a visual tracking test platform was established. The adaptive control method was proposed to compensate for the accuracy of motion trajectories. The variable-stiffness performance of the soft robot was verified by conducting stiffness tests and bending tests. The results provide novel theoretical and technical support for the modelling and control of variable-stiffness soft robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/acdc73 | DOI Listing |