Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNA depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNA-specific 2'--methylation at the wobble position, making virtually all eukaryotic tRNA susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246899PMC
http://dx.doi.org/10.1126/sciadv.adh8502DOI Listing

Publication Analysis

Top Keywords

samd9 acnase
16
human samd9
8
protein synthesis
8
defense strategy
8
substrate specificity
8
samd9
7
samd9 poxvirus-activatable
4
poxvirus-activatable anticodon
4
anticodon nuclease
4
nuclease inhibiting
4

Similar Publications

Inherited bone marrow failure syndromes often result from pathogenic mutations in genes that are important for ribosome function, namely, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita. Germline mutations in SAMD9 are a frequent genetic lesion resulting in an inherited bone marrow failure syndrome with monosomy 7; some patients have severe multisystem syndromes that include myelodysplasia. The association of germline SAMD9 mutations and bone marrow failure is clear; however, to date, there is no reliable method to predict whether a novel SAMD9 mutation is pathogenic unless it is accompanied by an obvious family history and/or clinical syndrome.

View Article and Find Full Text PDF

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA), resulting in codon-specific ribosomal pausing and stress signaling.

View Article and Find Full Text PDF