98%
921
2 minutes
20
Background: Identifying the locations of gene breakpoints between species of different taxonomic groups can provide useful insights into the underlying evolutionary processes. Given the exact locations of their genes, the breakpoints can be computed without much effort. However, often, existing gene annotations are erroneous, or only nucleotide sequences are available. Especially in mitochondrial genomes, high variations in gene orders are usually accompanied by a high degree of sequence inconsistencies. This makes accurately locating breakpoints in mitogenomic nucleotide sequences a challenging task.
Results: This contribution presents a novel method for detecting gene breakpoints in the nucleotide sequences of complete mitochondrial genomes, taking into account possible high substitution rates. The method is implemented in the software package DeBBI. DeBBI allows to analyze transposition- and inversion-based breakpoints independently and uses a parallel program design, allowing to make use of modern multi-processor systems. Extensive tests on synthetic data sets, covering a broad range of sequence dissimilarities and different numbers of introduced breakpoints, demonstrate DeBBI 's ability to produce accurate results. Case studies using species of various taxonomic groups further show DeBBI 's applicability to real-life data. While (some) multiple sequence alignment tools can also be used for the task at hand, we demonstrate that especially gene breaks between short, poorly conserved tRNA genes can be detected more frequently with the proposed approach.
Conclusion: The proposed method constructs a position-annotated de-Bruijn graph of the input sequences. Using a heuristic algorithm, this graph is searched for particular structures, called bulges, which may be associated with the breakpoint locations. Despite the large size of these structures, the algorithm only requires a small number of graph traversal steps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243065 | PMC |
http://dx.doi.org/10.1186/s12859-023-05371-4 | DOI Listing |
Anal Chem
September 2025
Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China.
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. Current clinical diagnosis primarily relies on invasive detection methods, while molecular subtyping remains a complex and time-consuming process. This study innovatively employed silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) technology to systematically analyze 116 serum samples, including those with breakpoint cluster region-Abelson (-) fusion genotype, mixed-lineage leukemia (, also known as lysine methyltransferase 2A, ) gene rearrangement subtype, T-lymphoblastic ALL, and healthy controls.
View Article and Find Full Text PDFFront Genet
August 2025
Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Background And Objective: Parental chromosomal structural variations (SVs) represent a primary genetic factor contributing to recurrent spontaneous abortion (RSA). Individuals carrying SVs with complex chromosomal rearrangements (CCRs) typically exhibit a normal phenotype but are at an increased risk of miscarriage. Current standard clinical detection methods are insufficient for the identification and interpretation of all SV types, particularly complex and occult SVs, thereby presenting a significant challenge for clinical genetic counseling.
View Article and Find Full Text PDFBr J Haematol
September 2025
Department of Pediatrics, Stanford University, Stanford, California, USA.
Chronic myeloid leukaemia (CML) accounts for 2% of leukaemias in children and 9% in adolescents. While the BCR::ABL1 fusion gene remains a hallmark across all age groups, emerging evidence suggests that paediatric CML exhibits unique biological and clinical characteristics compared to its adult counterpart. Children often present with more aggressive clinical features and show distinct treatment response patterns.
View Article and Find Full Text PDFInt J Lab Hematol
September 2025
Department of Medical Oncology, Dr BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Introduction: B-cell acute lymphoblastic leukemia (B-ALL) is genetically heterogeneous. We assessed the utility of FusionPlex ALL targeted RNA sequencing panel in detecting gene fusions and other genomic lesions in B-ALL.
Methods: The high-risk B-ALL, negative for common recurrent gene fusions (RGF), that is, BCR::ABL1, ETV6::RUNX1, TCF3::PBX1 and KMT2A::AFF1, were analysed with RNA-based targeted sequencing 81-gene-panel FusionPlex ALL (IDT, USA).
JHEP Rep
September 2025
Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China.
Background & Aims: HBV integration profiles in the natural history of chronic HBV infection (CHB) have not been well-defined. Hence, we aimed to determine HBV integration profiles across different CHB phases.
Methods: We delineated integration profiles from liver biopsies of 55 patients in different CHB phases (3 HBsAg-positive/HBeAg-positive infection; 13 HBsAg-positive/HBeAg-positive hepatitis; 7 HBsAg-positive/HBeAg-negative infection; 12 HBsAg-positive/HBeAg-negative hepatitis; 10 HBsAg seroclearance; 10 occult HBV).