Seasonal variation characteristics of atmospheric peroxyacetyl nitrate (PAN) and its source apportionment in a megacity in southern China.

Sci Total Environ

Environmental Laboratory, PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China. Electronic address:

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Owing to its biotoxicity and inductive effect on photochemical pollution, atmospheric peroxyacetyl nitrate (PAN), which is a typical product of atmospheric photochemical reactions, has attracted much research attention. However, to the best of our knowledge, few comprehensive studies have been conducted on the seasonal variation and key influencing factors of PAN concentrations in southern China. In this study, PAN, ozone (O), precursor volatile organic compound (VOC), and other pollutant concentrations were measured online for 1 year (from October 2021 to September 2022) in Shenzhen, a megacity in the Greater Bay Area of China. The average concentrations of PAN and peroxypropionyl nitrate (PPN) were 0.54 and 0.08 parts per billion (ppb), and the maximum hourly concentrations reached 10.32 and 1.01 ppb, respectively. The results of the generalized additive model (GAM) showed that the atmospheric oxidation capacity and precursor concentration were the most important factors affecting the PAN concentration. According to the steady-state model, the average cumulative contribution to the peroxyacetyl (PA) radical formation rate by six major carbonyl compounds was calculated at 4.2 × 10 molecules cm s, and acetaldehyde (63.0 %) and acetone (13.9 %) contributed the most. Furthermore, the photochemical-age-based parameterization method was used to analyze the source contributions of carbonyl compounds and PA radicals. The results showed that although the primary anthropogenic (40.2 %), biogenic (27.8 %), and secondary anthropogenic (16.4 %) sources were the most important contributors of PA radicals, the biogenic and secondary anthropogenic source contributions both increased considerably in summer, and the cumulative proportion of both sources reached ~70 % in July. In addition, a comparison of PAN pollution processes in different seasons revealed that in summer and winter, the PAN concentration was predominantly limited by precursors and meteorological parameters, such as light intensity, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164662DOI Listing

Publication Analysis

Top Keywords

seasonal variation
8
atmospheric peroxyacetyl
8
peroxyacetyl nitrate
8
pan
8
nitrate pan
8
southern china
8
factors pan
8
pan concentration
8
carbonyl compounds
8
source contributions
8

Similar Publications

Objective: Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in older adults, particularly those with comorbidities. Despite its clinical impact, RSV remains underdiagnosed and underreported. We sought to assess the burden of RSV in older adults (≥ 60 years of age) in Brazil using national surveillance data for the 2022-2023 period.

View Article and Find Full Text PDF

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

Background: The river ecosystems provide habitats and source of water for a number of species including humans. The uncontrolled accumulation of pollutants in the aquatic environment enhances the development of antibiotic-resistant bacteria and genes.

Methods: Water samples were collected seasonally from different sites of Gomti and Ganga River.

View Article and Find Full Text PDF

The Earth's grasslands have experienced extensive alterations to their grazing regimes over the course of human history. We asked how native grassland herbivores (bison, prairie dogs, and grasshoppers) and a non-native herbivore that has become dominant (cattle) affect seasonal patterns of plant and soil elemental chemistry and aboveground plant biomass in a shortgrass prairie in the North American Northern Great Plains. To quantify herbivore effects, we sampled plants and soils across 4 months of the growing season in 15 grassland sites comprising five herbivore regimes with varying densities of bison, cattle, prairie dogs, and grasshoppers.

View Article and Find Full Text PDF

Background: Seasonal variation in mortality results from a combination of environmental, biological, and social factors, with ambient temperature recognized as a key contributor. However, comprehensive assessments disentangling temperature effects from other seasonal influences across a broad range of mortality causes remain limited. This study aimed to quantify and compare the mortality burden attributable to ambient temperature and broader seasonal variation across major causes of death in Spain.

View Article and Find Full Text PDF