Activating transcription factor 4 regulates mitochondrial content, morphology, and function in differentiating skeletal muscle myotubes.

Am J Physiol Cell Physiol

Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mitochondrial function is widely recognized as a major determinant of health, emphasizing the importance of understanding the mechanisms promoting mitochondrial quality in various tissues. Recently, the mitochondrial unfolded protein response (UPR) has come into focus as a modulator of mitochondrial homeostasis, particularly in stress conditions. In muscle, the necessity for activating transcription factor 4 (ATF4) and its role in regulating mitochondrial quality control (MQC) have yet to be determined. We overexpressed (OE) and knocked down ATF4 in C2C12 myoblasts, differentiated them to myotubes for 5 days, and subjected them to acute (ACA) or chronic (CCA) contractile activity. ATF4 mediated myotube formation through the regulated expression of myogenic factors, mainly Myc and myoblast determination protein 1 (MyoD), and suppressed mitochondrial biogenesis basally through peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1α). However, our data also show that ATF4 expression levels are directly related to mitochondrial fusion and dynamics, UPR activation, as well as lysosomal biogenesis and autophagy. Thus, ATF4 promoted enhanced mitochondrial networking, protein handling, and the capacity for clearance of dysfunctional organelles under stress conditions, despite lower levels of mitophagy flux with OE. Indeed, we found that ATF4 promoted the formation of a smaller pool of high-functioning mitochondria that are more responsive to contractile activity and have higher oxygen consumption rates and lower reactive oxygen species levels. These data provide evidence that ATF4 is both necessary and sufficient for mitochondrial quality control and adaptation during both differentiation and contractile activity, thus advancing the current understanding of ATF4 beyond its canonical functions to include the regulation of mitochondrial morphology, lysosomal biogenesis, and mitophagy in muscle cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00080.2023DOI Listing

Publication Analysis

Top Keywords

mitochondrial quality
12
contractile activity
12
mitochondrial
11
activating transcription
8
transcription factor
8
stress conditions
8
atf4
8
quality control
8
lysosomal biogenesis
8
atf4 promoted
8

Similar Publications

Introduction: Obesity remains a critical global health challenge, intricately linked to poor dietary quality, gut microbiota dysbiosis, and mitochondrial dysfunction.

Purpose: This study aimed to investigate the comparative effects of brown rice, meal replacements, and thiazolidinediones on mitochondrial abundance and gut microbiota composition in a rat model of diet-induced obesity.

Methods And Materials: A total of twenty male Sprague Dawley rats were randomly assigned to five groups: control, high-fat high-fructose diet, and three intervention groups receiving the same obesogenic diet supplemented with brown rice, meal replacement, or thiazolidinediones for twelve weeks.

View Article and Find Full Text PDF

Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.

View Article and Find Full Text PDF

The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor.

View Article and Find Full Text PDF

This review comprehensively summarizes the current understanding of ubiquitin-specific protease 30 (USP30), covering its structural characteristics, functions in cellular processes, associations with diseases, diagnostic and therapeutic strategies, as well as controversies and future perspectives. USP30, a deubiquitinating enzyme, plays crucial roles in mitochondrial quality control, autophagy regulation, and cellular homeostasis. It is implicated in the progression of several malignancies, including hepatocellular carcinoma, breast carcinoma, and glioblastoma, as well as neurodegenerative disorders such as Parkinson's disease.

View Article and Find Full Text PDF

Aging is associated with cognitive decline, impaired spatial learning, and diminished brain function, significantly impacting quality of life (QoL). Emerging evidence suggests that lifestyle interventions, like omega-3 fatty acids (FAs) intake and regular exercise, can mitigate these age-related deficits by targeting key molecular pathways implicated in oxidative damage, inflammation, and reduced fibrinolytic activity. By doing so, omega-3 FAs, principally eicosapentaenoic acid and docosahexaenoic acid, influence signaling pathways that enhance synaptic plasticity, prevent apoptosis, and promote neurogenesis.

View Article and Find Full Text PDF