Residential exposure to magnetic fields from high-voltage power lines and risk of childhood leukemia.

Environ Res

Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Several studies have suggested an excess risk of leukemia among children living close to high-voltage power lines and exposed to magnetic fields. However, not all studies have yielded consistent results, and many studies may have been susceptible to confounding and exposure misclassification.

Methods: We conducted a case-control study to investigate the risk of leukemia associated with magnetic field exposure from high-voltage power lines. Eligible participants were children aged 0-15 years residing in the Northern Italian provinces of Modena and Reggio Emilia. We included all 182 registry-identified childhood leukemia cases diagnosed in 1998-2019, and 726 age-, sex- and province-matched population controls. We assessed exposure by calculating distance from house to nearest power line and magnetic field intensity modelling at the subjects' residence. We used conditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment for potential confounders (distance from nearest petrol station and fuel supply within the 1000 m-buffer, traffic-related particulate and benzene concentrations, presence of indoor transformers, percentage of urban area and arable crops).

Results: In multivariable analyses, the OR comparing children living <100 m from high-voltage power-lines with children living ≥400 m from power-lines was 2.0 (95% CI 0.8-5.0). Results did not differ substantially by age at disease diagnosis, disease subtype, or when exposure was based on modeled magnetic field intensity, though estimates were imprecise. Spline regression analysis showed an excess risk for both overall leukemia and acute lymphoblastic leukemia among children with residential distances <100 m from power lines, with a monotonic inverse association below this cutpoint.

Conclusions: In this Italian population, close proximity to high-voltage power lines was associated with an excess risk of childhood leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116320DOI Listing

Publication Analysis

Top Keywords

high-voltage power
12
power lines
12
magnetic fields
8
childhood leukemia
8
risk leukemia
8
children living
8
magnetic field
8
residential exposure
4
magnetic
4
exposure magnetic
4

Similar Publications

Background: Catheter ablation of scar-related interatrial septal atrial tachycardias (IAS-ATs) is challenging and can be refractory to conventional unipolar radiofrequency catheter ablation (RFCA).

Aim: This multicenter study investigated the safety and efficacy of bipolar radiofrequency catheter ablation (Bi-RFCA) in patients with IAS-AT refractory to conventional unipolar RFCA.

Methods: Consecutive patients with scar-related IAS-AT refractory to conventional unipolar RFA across three electrophysiological centers were included in the study.

View Article and Find Full Text PDF

We present two newly constructed experimental setups-REBEL (Resonant Excitation of Beams with Electromagnetic fields and Lasers) and STRIPE (Stopping and Trapping of Radioactive Isotopes for Precision Experiments)-integrated into a single offline beamline at KU Leuven. REBEL is designed for collinear laser spectroscopy of ion bunches, including isobaric separation with a multi-reflection time-of-flight mass spectrometer, enabling high-sensitivity measurements of mass-selected fast-ion beams. In contrast, STRIPE focuses on the deceleration, trapping, and laser cooling of ions in a segmented linear Paul trap, optimized for long interrogation times and precision spectroscopy.

View Article and Find Full Text PDF

The burgeoning Internet of Things demands highly customizable microbatteries (MBs) to power miniaturized electronics, yet challenges exist in fabricating ultra-small MBs and integrating customizable modules within confined areas. Herein, we report a novel photolithographic microfabrication strategy enabling the large-scale production of monolithic integrated ultra-small MBs. The approach utilizes photoresist grooves as micropattern templates and employs a non-destructive mechanical peeling process to fabricate precise MBs with a compact area of 2.

View Article and Find Full Text PDF

Acid-Alkaline Double Electrolytes for High-Energy Aqueous Proton Batteries.

Angew Chem Int Ed Engl

August 2025

College of Smart Materials and Future Energy, Fudan University, Shanghai, 200433, P.R. China.

Aqueous proton batteries offer a promising energy storage solution due to their inherent safety, rapid ion mobility, and low cost. However, their performance is largely constrained by water's limited electrochemical stability, restricting operating voltage and energy density. This study addresses this challenge by introducing an innovative acid-alkaline double electrolyte configuration to achieve high-voltage aqueous proton batteries.

View Article and Find Full Text PDF

The use of ethylenediamine-based compounds, including ethylenediamine (EDA), tetramethylethylenediamine (TMEDA), and disodium ethylenediaminetetraacetate (EDTA-2Na), as corrosion inhibitors for aluminum radiators in high-voltage direct current (HVDC) converter valve systems is investigated. The results of the electrochemical analysis demonstrate that EDA spontaneously adsorbs on aluminum surfaces through N-Al coordination, resulting in the formation of a protective layer that achieves a 97.28% corrosion inhibition rate.

View Article and Find Full Text PDF