Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Classic ecological research into the determinants of biodiversity patterns emphasised the important role of three-dimensional (3D) vegetation heterogeneity. Yet, measuring vegetation structure across large areas has historically been difficult. A growing focus on large-scale research questions has caused local vegetation heterogeneity to be overlooked compared with more readily accessible habitat metrics from, for example, land cover maps. Using newly available 3D vegetation data, we investigated the relative importance of habitat and vegetation heterogeneity for explaining patterns of bird species richness and composition across Denmark (42,394 km ). We used standardised, repeated point counts of birds conducted by volunteers across Denmark alongside metrics of habitat availability from land-cover maps and vegetation structure from rasterised LiDAR data (10 m resolution). We used random forest models to relate species richness to environmental features and considered trait-specific responses by grouping species by nesting behaviour, habitat preference and primary lifestyle. Finally, we evaluated the role of habitat and vegetation heterogeneity metrics in explaining local bird assemblage composition. Overall, vegetation structure was equally as important as habitat availability for explaining bird richness patterns. However, we did not find a consistent positive relationship between species richness and habitat or vegetation heterogeneity; instead, functional groups displayed individual responses to habitat features. Meanwhile, habitat availability had the strongest correlation with the patterns of bird assemblage composition. Our results show how LiDAR and land cover data complement one another to provide insights into different facets of biodiversity patterns and demonstrate the potential of combining remote sensing and structured citizen science programmes for biodiversity research. With the growing coverage of LiDAR surveys, we are witnessing a revolution of highly detailed 3D data that will allow us to integrate vegetation heterogeneity into studies at large spatial extents and advance our understanding of species' physical niches.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.13945DOI Listing

Publication Analysis

Top Keywords

vegetation heterogeneity
24
vegetation structure
16
habitat vegetation
12
species richness
12
habitat availability
12
vegetation
11
habitat
9
biodiversity patterns
8
land cover
8
patterns bird
8

Similar Publications

Understanding the intricate relationship between land use/land cover (LULC) transformations and land surface temperature (LST) is critical for sustainable urban planning. This study investigates the spatiotemporal dynamics of LULC and LST across Delhi, India, using thermal data from Landsat 7 (2001), Landsat 5 (2011) and Landsat 8 (2021) resampled to 30-m spatial resolution, during the peak summer month of May. The study aims to target three significant aspects: (i) to analyse and present LULC-LST dynamics across Delhi, (ii) to evaluate the implications of LST effects at the district level and (iii) to predict seasonal LST trends in 2041 for North Delhi district using the seasonal auto-regressive integrated moving average (SARIMA) time series model.

View Article and Find Full Text PDF

In general, species on our planet are adapted to phenological patterns of vegetation, which are strongly influenced by various climatic and environmental factors that, when altered, can threaten biodiversity. Recent studies have utilized the spatiotemporal variability of vegetation to understand its dynamics, directly affecting biodiversity. Therefore, this research aimed to generate indices of temporal variability considering vegetation phenology and indices of spatial variability of vegetation to subsequently identify priority areas for biodiversity conservation in the Cerrado and Caatinga regions in Minas Gerais State, Brazil.

View Article and Find Full Text PDF

How urban green space typologies and attributes influence avifauna in rapidly urbanizing Afrotropical cities.

J Environ Manage

September 2025

A.P. Leventis Ornithological Research Institute (APLORI), Centre of Excellence, University of Jos Biological Conservatory, P.O.Box 13404, Laminga, Jos, 930001, Plateau State, Nigeria. Electronic address:

Urban green spaces serve as critical refugia for bird conservation in an increasingly urbanized world. To understand how these spaces support avian communities in Afrotropical cities, we investigated bird assemblages across 40 urban green spaces in Jos-Plateau and Abuja-FCT in central Nigeria, covering a total of 91 transects (45.5 km), to examine how green space typologies and attributes influence avian biodiversity.

View Article and Find Full Text PDF

Fifteen years of grazing exclusion reshapes vegetation structure and landscape connectivity across alpine ecosystems in the Qilian Mountain, Northwestern China.

J Environ Manage

September 2025

Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China. Electron

High-altitude and high-latitude ecosystems are among the most vulnerable to climate change and human disturbance, with widespread degradation threatening their role in water regulation, biodiversity conservation, and carbon sequestration. Livestock-exclusion enclosure is widely applied for alpine restoration, yet its ecological outcomes remain poorly understood across elevation gradients and ecosystem types. To address this, a 15-year grazing-exclusion experiment was conducted in a vertical transect spanning 2980-4164 m a.

View Article and Find Full Text PDF

Biodiversity in arid river basins is highly climate-sensitive, yet the multi-pathway relations among the environment, landscape structure, connectivity, and plant diversity remain unclear. Framed by a scale-place-space sustainability perspective, we evaluated, in the Hotan River Basin (NW China), how the environmental factors affect plant diversity directly and indirectly via the landscape configuration and functional connectivity. We integrated Landsat images (2000, 2012, and 2023), 57 vegetation plots, topographic and meteorological data; computed the landscape indices and Conefor connectivity metrics (PC, IIC); and fitted a partial least squares structural equation model (PLS-SEM).

View Article and Find Full Text PDF