Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

PHARMACOM-EPI is a novel framework to predict plasma concentrations of drugs at the time of occurrence of clinical outcomes. In early 2021, the U.S. Food and Drug Administration (FDA) issued a warning on the antiseizure drug lamotrigine claiming that it has the potential to increase the risk of arrhythmias and related sudden cardiac death due to a pharmacological sodium channel-blocking effect. We hypothesized that the risk of arrhythmias and related death is due to toxicity. We used the PHARMACOM-EPI framework to investigate the relationship between lamotrigine's plasma concentrations and the risk of death in older patients using real-world data. Danish nationwide administrative and healthcare registers were used as data sources and individuals aged 65 years or older during the period 1996 - 2018 were included in the study. According to the PHARMACOM-EPI framework, plasma concentrations of lamotrigine were predicted at the time of death and patients were categorized into non-toxic and toxic groups based on the therapeutic range of lamotrigine (3-15 mg/L). Over 1 year of treatment, the incidence rate ratio (IRR) of all-cause mortality was calculated between the propensities score matched toxic and non-toxic groups. In total, 7286 individuals were diagnosed with epilepsy and were exposed to lamotrigine, 432 of which had at least one plasma concentration measurement The pharmacometric model by Chavez et al. was used to predict lamotrigine's plasma concentrations considering the lowest absolute percentage error among identified models (14.25 %, 95 % CI: 11.68-16.23). The majority of lamotrigine associated deaths were cardiovascular-related and occurred among individuals with plasma concentrations in the toxic range. The IRR of mortality between the toxic group and non-toxic group was 3.37 [95 % CI: 1.44-8.32] and the cumulative incidence of all-cause mortality exponentially increased in the toxic range. Application of our novel framework PHARMACOM-EPI provided strong evidence to support our hypothesis that the increased risk of all-cause and cardiovascular death was associated with a toxic plasma concentration level of lamotrigine among older lamotrigine users.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2023.106811DOI Listing

Publication Analysis

Top Keywords

plasma concentrations
24
plasma
8
lamotrigine
8
novel framework
8
risk arrhythmias
8
pharmacom-epi framework
8
lamotrigine's plasma
8
all-cause mortality
8
plasma concentration
8
toxic range
8

Similar Publications

Background: Cannabidiol (CBD), a non-intoxicating phytocannabinoid, is used by athletes to enhance recovery and manage other conditions (e.g., poor sleep, anxiety).

View Article and Find Full Text PDF

Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.

View Article and Find Full Text PDF

Background: Population pharmacokinetic models can potentially provide suggestions for an initial dose and the magnitude of dose adjustment during therapeutic drug monitoring procedures of imatinib. Several population pharmacokinetic models for imatinib have been developed over the last two decades. However, their predictive performance is still unknown when extrapolated to different populations, especially children.

View Article and Find Full Text PDF

Introduction: Pharmacokinetic differences between long-acting injectable antipsychotic (LAI) formulations, combined with a lack of clinical switch studies, contribute to clinician uncertainty when transitioning between LAIs. This analysis employed a population pharmacokinetic (popPK) modeling approach to characterize dosing conversions and switching strategies from intramuscular paliperidone palmitate once monthly (PP1m) to TV-46000, a long-acting subcutaneous formulation of risperidone, once monthly (q1m), with a secondary analysis of PP1m to TV-46000 every 2 months (q2m).

Methods: For PP1m and TV-46000, concentration-time profiles for paliperidone and TV-46000 total active moiety (TAM; risperidone + paliperidone) were simulated on the basis of published popPK models with virtual populations of 5000 patients.

View Article and Find Full Text PDF

Ilunocitinib, a novel Janus kinase inhibitor, is indicated for managing pruritus and skin lesions associated with canine allergic and atopic dermatitis. Pharmacokinetics of ilunocitinib were investigated following single intravenous and oral administrations, both in fed and fasted states. Dose proportionality was assessed using oral doses ranging from 0.

View Article and Find Full Text PDF