Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are either tested on unrepresentative patient cohorts or are insufficiently well-validated, leading to poor generalisability to real-world tasks. The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.

Methods: Medline, Embase, Cochrane library and Web of Science were searched until September 2021 for studies that temporally or externally validated AI capable of detecting abnormalities in first-line computed tomography (CT) or magnetic resonance (MR) neuroimaging. A bivariate random effects model was used for meta-analysis where appropriate. This study was registered on PROSPERO as CRD42021269563.

Results: Out of 42,870 records screened, and 5734 potentially eligible full texts, only 16 studies were eligible for inclusion. Included studies were not compromised by unrepresentative datasets or inadequate validation methodology. Direct comparison with radiologists was available in 4/16 studies and 15/16 had a high risk of bias. Meta-analysis was only suitable for intracranial hemorrhage detection in CT imaging (10/16 studies), where AI systems had a pooled sensitivity and specificity 0.90 (95% confidence interval [CI] 0.85-0.94) and 0.90 (95% CI 0.83-0.95), respectively. Other AI studies using CT and MRI detected target conditions other than hemorrhage (2/16), or multiple target conditions (4/16). Only 3/16 studies implemented AI in clinical pathways, either for pre-read triage or as post-read discrepancy identifiers.

Conclusion: The paucity of eligible studies reflects that most abnormality detection AI studies were not adequately validated in representative clinical cohorts. The few studies describing how abnormality detection AI could impact patients and clinicians did not explore the full ramifications of clinical implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233528PMC
http://dx.doi.org/10.1007/s00062-023-01291-1DOI Listing

Publication Analysis

Top Keywords

abnormality detection
12
artificial intelligence
8
high-volume neuroimaging
8
intracranial hemorrhage
8
hemorrhage detection
8
090 95%
8
target conditions
8
studies
7
detection
5
systematic review
4

Similar Publications

MRI-negative cerebellar syndrome caused by medication-induced magnesium deficiency: a case report.

BMC Neurol

September 2025

Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.

Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.

View Article and Find Full Text PDF

Isolated Congenital Middle Ear Malformations: Comparison of preoperative 0.1 mm Ultra-High-Resolution CT and Conventional High-Resolution CT.

AJNR Am J Neuroradiol

September 2025

From the Department of Otorhinolaryngology Head and Neck Surgery (J.G., Y.L., S.G.) and Department of Radiology (N.X., R.T., H.D.,Z.Y., Z.W., P.Z.), Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background And Purpose: Isolated congenital middle ear malformation contributes significantly to congenital hearing loss and growth problems. This study aims to compare 0.1 mm isotropic ultra-high-resolution computed tomography and conventional high-resolution computed tomography for assessing isolated congenital middle ear malformation, using surgical exploration as the gold standard.

View Article and Find Full Text PDF

ALYREF stabilizes CREPT mRNA to accelerate the development of nasopharyngeal carcinoma through dependence on m5C modification.

Exp Cell Res

September 2025

The Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No.31 Longhua Road, Haikou City, Hainan Province, 570000, P.R. China. Electronic address:

Background: Nasopharyngeal carcinoma (NPC) is a kind of tumor disease with high malignant degree. CREPT expression was elevated abnormally in multi-cancers. However, the role and regulatory mechanism of CREPT in NPC remains unknown.

View Article and Find Full Text PDF

Rapid and sensitive acute leukemia classification and diagnosis platform using deep learning-assisted SERS detection.

Cell Rep Med

August 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Mole

Rapid identification and accurate diagnosis are critical for individuals with acute leukemia (AL). Here, we propose a combined deep learning and surface-enhanced Raman scattering (DL-SERS) classification strategy to achieve rapid and sensitive identification of AL with various subtypes and genetic abnormalities. More than 390 of cerebrospinal fluid (CSF) samples are collected as targets, encompassing healthy control, AL patients, and individuals with other diseases.

View Article and Find Full Text PDF

Purpose: To evaluate whether AI-assisted ipsilateral tissue matching in digital breast tomosynthesis (DBT) reduces localization errors beyond typical tumor boundaries, particularly for non-expert radiologists. The technology category is deep learning.

Materials And Methods: The study consisted of two parts.

View Article and Find Full Text PDF