Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this present research, an attempt has been made to address the influence of drug-coformer stoichiometric ratio on cocrystal design and its impact on improvement of solubility and dissolution, as well as bioavailability of poorly soluble telmisartan. The chemistry behind cocrystallization and the optimization of drug-coformer molar ratio were explored by the molecular docking approach, and theoretical were implemented practically to solve the solubility as well as bioavailability related issues of telmisartan. A new multicomponent solid form, i.e., cocrystal, was fabricated using different molar ratios of telmisartan and maleic acid, and characterized by SEM, DSC and XRD studies. The molecular docking study suggested that specific molar ratios of drug-coformer can successfully cluster with each other and form a specific geometry with favourable energy conformation to form cocrystals. Synthesized telmisartan-maleic acid cocrystals showed remarkable improvement in solubility and dissolution of telmisartan by 9.08-fold and 3.11-fold, respectively. A SEM study revealed the formation of cocrystals of telmisartan when treated with maleic acid. DSC and XRD studies also confirmed the conversion of crystalline telmisartan into its cocrystal state upon treating with maleic acid. Preclinical investigation revealed significant improvement in the efficacy of optimized cocrystals in terms of plasma drug concentration, indicating enhanced bioavailability through improved solubility as well as dissolution of telmisartan cocrystals. The present research concluded that molecular docking is an important path in selecting an appropriate stoichiometric ratio of telmisartan: maleic acid to form cocrystals and improve the solubility, dissolution, and bioavailability of poorly soluble telmisartan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959501PMC
http://dx.doi.org/10.3390/ph16020284DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
maleic acid
16
stoichiometric ratio
12
solubility dissolution
12
telmisartan
9
cocrystal design
8
improvement solubility
8
well bioavailability
8
bioavailability soluble
8
soluble telmisartan
8

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

This study aimed to synthesize and evaluate the anticancer activity of novel chalcone derivative against colon cancer by in vitro cytotoxicity against HCT-116 (Research Resource Identifiers:CVCL_D4JB) cell line and in vivo using EAC (Research Resource Identifiers: CVCL_1306) and DLA (Research Resource Identifiers: CVCL_VR37) cells inoculated Swiss albino mice. The present study aimed to synthesize the new chalcone derivatives and conduct its anti-colon cancer activity both in vitro and in vivo. The designed compounds were subjected to in silico studies like binding pocket analysis, molecular docking, and ADME studies.

View Article and Find Full Text PDF