Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epigenetic modifications of DNA are known to play important regulatory roles in biological systems, especially in regulation of gene expression, and are associated with many types of human diseases, including cancer. Alternative DNA secondary structures, such as G-quadruplexes, can also influence gene transcription, thus suggesting that such structures may represent a distinctive layer of epigenetic information. G-quadruplex structures and DNA epigenetic modifications often go side by side, and recent evidence reveals that cytosine modifications within loops of G-quadruplexes can play a role in modulating their stability and structural polymorphism. Therefore, the development and validation of experimental techniques that can easily and reliably analyse G-quadruplex structures are highly desirable. In the present study, we propose to exploit the advantages of UV resonance Raman (UVRR) spectroscopy to investigate cytosine epigenetic modifications along with conformational changes in G-quadruplex-forming DNA. Our findings show that clear and specific spectral changes occur when there is a change in a G-quadruplex structure. Moreover, UVRR spectral analysis can indirectly distinguish the spectral variations occurring because of modifications in the guanine glycosidic conformations, as well as detect changes in the loops induced by H-bond formation or hydration of nitrogenous bases. The results further underscore the utility of UVRR spectroscopy for G-quadruplex structure elucidation under biologically relevant solution conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122901DOI Listing

Publication Analysis

Top Keywords

epigenetic modifications
16
cytosine epigenetic
8
modifications conformational
8
conformational changes
8
resonance raman
8
g-quadruplex structures
8
uvrr spectroscopy
8
g-quadruplex structure
8
modifications
6
g-quadruplex
5

Similar Publications

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF

Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).

View Article and Find Full Text PDF