98%
921
2 minutes
20
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221132 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15051508 | DOI Listing |
J Transl Med
August 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
Background: Anti-angiogenic therapy is a clinically validated method for cancer treatment. It was previously revealed that concurrent targeting of angiogenic and death receptor signaling pathways by a multivalent DR5-specific cytokine TRAIL variant DR5-B genetically fused with the effector peptides, SRH-DR5-B-iRGD, enhances solid tumor suppression and prolongs survival. The SRH peptide is aimed at blocking the tumor neoangiogenesis by preventing activation of the VEGFR2 receptor, while the iRGD peptide interferes with the activation of integrin αβ, and enhances the tumor penetration.
View Article and Find Full Text PDFFront Cell Infect Microbiol
May 2025
Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
This review article discusses the role of vascular endothelial growth factor A (VEGF-A) in the pathogenesis of SARS-CoV-2 and HIV infection, both conditions being renowned for their impact on the vascular endothelium. The processes involved in vascular homeostasis and angiogenesis are reviewed briefly before exploring the interplay between hypoxia, VEGF-A, neuropilin-1 (NRP-1), and inflammatory pathways. We then focus on SARS-CoV-2 infection and show how the binding of the viral pathogen to the angiotensin-converting enzyme 2 receptor, as well as to NRP-1, leads to elevated levels of VEGF-A and consequences such as coagulation, vascular dysfunction, and inflammation.
View Article and Find Full Text PDFMol Pharm
February 2025
Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.
View Article and Find Full Text PDFCell Biochem Biophys
March 2025
Department Of Medical Services And Techniques, Kahramanmaraş Health Services Vocational School, Pathology Laboratory Techniques Pr., Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.
Cell Biochem Biophys
December 2024
Department Of Medical Services And Techniques, Kahramanmaraş Health Services Vocational School, Pathology Laboratory Techniques Pr., Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey.