98%
921
2 minutes
20
Halophytes are considered emerging functional foods as they are high in protein, minerals, and trace elements, although studies investigating halophyte digestibility, bioaccessibility, and intestinal absorption are limited. Therefore, this study investigated the in vitro protein digestibility, bioaccessibility and intestinal absorption of minerals and trace elements in saltbush and samphire, two important Australian indigenous halophytes. The total amino acid contents of samphire and saltbush were 42.5 and 87.3 mg/g DW, and even though saltbush had a higher total protein content overall, the in vitro digestibility of samphire protein was higher than the saltbush protein. The in vitro bioaccessibility of Mg, Fe, and Zn was higher in freeze-dried halophyte powder compared to the halophyte test food, suggesting that the food matrix has a significant impact on mineral and trace element bioaccessibility. However, the samphire test food digesta had the highest intestinal Fe absorption rate, whereas the saltbush digesta exhibited the lowest (37.7 vs. 8.9 ng/mL ferritin). The present study provides crucial data about the digestive "fate" of halophyte protein, minerals, and trace elements and increases the understanding of these underutilized indigenous edible plants as future functional foods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222652 | PMC |
http://dx.doi.org/10.3390/molecules28104004 | DOI Listing |
Front Med (Lausanne)
August 2025
Internal Clinic, 3rd Medical Faculty, Charles University and University Thomayer Hospital, Prague, Czechia.
Objectives: The absorption of conventional cholecalciferol may be impaired in patients with inflammatory bowel disease (IBD). The bioavailability and optimal dosing of buccally absorbable nanoemulsion vitamin D in this population remain unclear. This study aimed to compare the effects of buccal nanoemulsion and conventional oral vitamin D supplementation on serum 25-hydroxyvitamin D (25OHD) levels in patients with IBD.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Microbiota Lab, Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, Warsaw, Poland.
Gastrointestinal eubiosis is essential for maintaining overall host wellbeing. Post-weaning diarrhea (PWD) is a common issue in pig development, arising from weaning stress, which disrupts the gut microbiota balance and increases susceptibility to infections. The primary bacterial pathogen linked to PWD is enterotoxigenic (ETEC).
View Article and Find Full Text PDFVet World
July 2025
Department of Feed and Animal Nutrition, Smart Livestock Industry Study Programme, Faculty of Animal Science, Universitas Brawijaya, Malang, East Java, Indonesia.
Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Pharmaceutical Sciences, Via del Liceo 1, 06123 Perugia, Italy. Electronic address:
Indole-3-carboxaldehyde (I3A), a microbial tryptophan metabolite, exhibits significant immunomodulatory activity at the host-microbial interface. However, its rapid transformation into metabolites like indole-3-carboxylic acid (I3CA) raises questions about their therapeutic potential. This study aimed to evaluate the pharmacological contributions of I3CA through the development of a proper delivery strategy.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2025
Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Prodrugs with enzymatic activation requirements, such as the weakly basic biopharmaceutical classification system (BCS) class IV compound abiraterone acetate (ABA), face considerable bioequivalence (BE) risks owing to their pH-dependent solubility, food effects, and variable intestinal hydrolysis. This study established clinically relevant dissolution specifications for ABA using biorelevant dissolution and physiologically based biopharmaceutics modelling (PBBM). Two dissolution methods, two-stage (gastrointestinal transfer simulation) and single-phase (biorelevant media), were evaluated under fasted and fed conditions.
View Article and Find Full Text PDF