98%
921
2 minutes
20
Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10218373 | PMC |
http://dx.doi.org/10.3390/ijms24108559 | DOI Listing |
BMC Public Health
September 2025
Department of Mathematics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str.48, Kaiserslautern, 67663, Germany.
We study the dynamics of coexisting influenza and SARS-CoV-2 by adapting a well-established age-specific COVID-19 model to a multi-pathogen framework. Sensitivity analysis and adjustment of the model to real-world data are used to investigate the influence of age-related factors on disease dynamics. Our findings underscore the critical role that transmission rates play in shaping the spread of influenza and COVID-19.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, China.
Previous epidemiological research has shown that immune cells have a significant impact on the progression and development of psoriatic arthritis (PsA). However, the causal relationship between immune cell characteristics and PsA remains uncertain. A bidirectional 2-sample Mendelian randomization analysis was conducted, using data from publicly available genome-wide association studies.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, SJTU-Fudan-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai,
Catharanthus roseus contains nearly 200 bioactive monoterpenoid indole alkaloids (MIAs) that are effective in treating cancer and other diseases. Ethylene plays a significant role in enhancing MIA biosynthesis, and we have found that it greatly induces the accumulation of anhydrovinblastine. However, the regulatory mechanisms underlying this process are not yet fully understood.
View Article and Find Full Text PDFAm Psychol
September 2025
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences.
In cluttered and complex natural scenes, selective attention enables the visual system to prioritize relevant information. This process is guided not only by perceptual cues but also by imagined ones. The current research extends the imagery-induced attentional bias to the unconscious level and reveals its cross-category applicability between different social cues (e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Disordered rock-salt LiVO (DRX-LVO) anode exhibits distinctive 3D Li percolation transport networks, which offers the unique advantage for ultra-charging. However, the existing chemical lithiation preparation routes not only pose safety risks due to the use of highly reactive reagents but also inevitably result in products with poor crystallinity. Investigating the origin, impact, and strategies for crystallinity degradation is pivotal for advancing the industrialization of chemical lithiation.
View Article and Find Full Text PDF