98%
921
2 minutes
20
Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-β). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204554 | PMC |
http://dx.doi.org/10.3390/neurolint15020037 | DOI Listing |
PLoS One
September 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC.
Cachexia, the loss of skeletal muscle mass and function with cancer, contributes to reduced life quality and worsened survival. Skeletal muscle fibrosis leads to disproportionate muscle weakness; however, the role of infiltrating immune cells and fibro-adipogenic progenitors (FAPs) in cancer-induced muscle fibrosis is not well understood. Using the C26 model of cancer cachexia, we sought to examine the changes to skeletal muscle immune cells and FAPs which contribute to excessive extracellular matrix (ECM) collagen deposition.
View Article and Find Full Text PDFClin Cancer Res
September 2025
University of Michigan-Ann Arbor, Ann Arbor, MI, United States.
Purpose: Liposarcoma (LPS) is the most common soft tissue sarcoma. Well-differentiated LPS (WDLPS) can progress to dedifferentiated LPS (DDLPS), a more aggressive form with higher metastatic potential and poor response to existing therapies. Progress in understanding and treating LPS has been limited.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.
Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.
View Article and Find Full Text PDFCancer Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.
View Article and Find Full Text PDF